
Computational
chemistry

In this chapter we extend the description of the electronic structure of molecules presented
in Chapter 5 by introducing methods that harness the power of computers to calculate elec-
tronic wavefunctions and energies. These calculations are among the most useful tools
used by chemists for the prediction of molecular structure and reactivity. The computational
methods we discuss handle the electron–electron repulsion term in the Schrödinger equa-
tion in different ways. One such method, the Hartree–Fock method, treats electron–electron
interactions in an average and approximate way. This approach typically requires the numer-
ical evaluation of a large number of integrals. Semiempirical methods set these integrals 
to zero or to values determined experimentally. In contrast, ab initio methods attempt to
evaluate the integrals numerically, leading to a more precise treatment of electron–electron
interactions. Configuration interaction and Møller–Plesset perturbation theory are used to
account for electron correlation, the tendency of electrons to avoid one another. Another
computational approach, density functional theory, focuses on electron probability densit-
ies rather than on wavefunctions. The chapter concludes by comparing results from differ-
ent electronic structure methods with experimental data and by describing some of the
wide range of chemical and physical properties of molecules that can be computed.

The field of computational chemistry, the use of computers to predict molecular
structure and reactivity, has grown in the past few decades due to the tremendous 
advances in computer hardware and to the development of efficient software pack-
ages. The latter are now applied routinely to compute molecular properties in a wide
variety of chemical applications, including pharmaceuticals and drug design, atmo-
spheric and environmental chemistry, nanotechnology, and materials science. Many
software packages have sophisticated graphical interfaces that permit the visualization
of results. The maturation of the field of computational chemistry was recognized by
the awarding of the 1998 Nobel Prize in Chemistry to J.A. Pople and W. Kohn for their
contributions to the development of computational techniques for the elucidation of
molecular structure and reactivity.

The central challenge

The goal of electronic structure calculations in computational chemistry is the 
solution of the electronic Schrödinger equation, @Ψ = EΨ, where E is the electronic
energy and Ψ is the many-electron wavefunction, a function of the coordinates of all
the electrons and the nuclei. To make progress, we invoke at the outset the Born–
Oppenheimer approximation and the separation of electronic and nuclear motion
(Chapter 5). The electronic hamiltonian @ is
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6 COMPUTATIONAL CHEMISTRY 173

(6.1a)

where

• the first term is the kinetic energy of the Ne electrons;

• the second term is the potential energy of attraction 
between each electron and each of the Nn nuclei, with electron i
at a distance rIi from nucleus I of charge ZIe;

• the final term is the potential energy of repulsion between
two electrons separated by rij.

The factor of 1–2 in the final sum ensures that each repulsion is
counted only once. The combination e2/4πε0 occurs throughout
computational chemistry, and we denote it j0. Then the hamilton-
ian becomes

(6.1b)

We shall use the following labels:

Species Label Number used

Electrons i and j = 1, 2, . . . Ne

Nuclei I = A, B, . . . Nn

Molecular orbitals, ψ m = a, b, . . .

Atomic orbitals used to construct the o = 1, 2, . . . Nb
molecular orbitals (the ‘basis’), χ

Another general point is that the theme we develop in the 
sequence of illustrations in this chapter is aimed at showing 
explicitly how to use the equations that we have presented, and
thereby give them a sense of reality. To do so, we shall take the
simplest possible many-electron molecule, dihydrogen (H2).
Some of the techniques we introduce do not need to be applied
to this simple molecule, but they serve to illustrate them in a
simple manner and introduce problems that successive sections
show how to solve. One consequence of choosing to develop 
a story in relation to H2, we have to confess, is that not all the 
illustrations are actually as brief as we would wish; but we 
decided that it was more important to show the details of each
little calculation than to adhere strictly to our normal use of the
term ‘brief ’.

l A BRIEF ILLUSTRATION

The notation we use for the description of H2 is shown in 
Fig. 6.1. For this two-electron (Ne = 2), two-nucleus (Nn = 2)
molecule the hamiltonian is
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To keep the notation simple, we introduce the one-electron
operator

(6.2)

which should be recognized as the hamiltonian for electron i
in an H2

+ molecule-ion. Then

(6.3)

We see that the hamiltonian for H2 is essentially that of each
electron in an H2

+-like molecule-ion but with the addition of
the electron–electron repulsion term. l

It is hopeless to expect to find analytical solutions with a
hamiltonian of the complexity of that shown in eqn 6.1, even 
for H2, and the whole thrust of computational chemistry is to
formulate and implement numerical procedures that give ever
more reliable results.

6.1 The Hartree–Fock formalism

The electronic wavefunction of a many-electron molecule is a
function of the positions of all the electrons, Ψ(r1,r2, . . . ). To
formulate one very widely used approximation, we build on the
material in Chapter 5, where we saw that in the MO description
of H2 we supposed that each electron occupies an orbital and
that the overall wavefunction can be written ψ(r1)ψ(r2). . . .
Note that this orbital approximation is quite severe and loses
many of the details of the dependence of the wavefunction on
the relative locations of the electrons. We do the same here, with
two small changes of notation. To simplify the appearance of the
expressions we write ψ(r1)ψ(r2) . . . as ψ(1)ψ(2). . . . Next, we
suppose that electron 1 occupies a molecular orbital ψa with
spin α, electron 2 occupies the same orbital with spin β, and so
on, and hence write the many-electron wavefunction Ψ as the
product Ψ = ψ a

α(1)ψ a
β(2). . . . The combination of a molecular

orbital and a spin function, such as ψ a
α(1), is the spinorbital

introduced in Section 4.4; for example, the spinorbital ψ a
α

should be interpreted as the product of the spatial wavefunction
ψa and the spin state α, so ψ a

α(1) = ψa(1)α(1), and likewise 
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Fig. 6.1 The notation used for the description of molecular
hydrogen, introduced in the brief illustration preceding Section
6.1 and used throughout the text.
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174 6 COMPUTATIONAL CHEMISTRY

for the other spinorbitals. We shall consider only closed-shell
molecules but the techniques we describe can be extended to
open-shell molecules.

A simple product wavefunction does not satisfy the Pauli
principle and change sign under the interchange of any pair of
electrons (Section 4.4). To ensure that the wavefunction does
satisfy the principle, we modify it to a sum of all possible per-
mutations, using plus and minus signs appropriately:

Ψ = ψ a
α(1)ψ a

β(2) . . . ψ z
β(Ne) − ψ a

α(2)ψ a
β(1) . . . ψ z

β(Ne) + . . .

(6.4)

There are Ne! terms in this sum, and the entire sum can be 
represented by the Slater determinant (Section 4.4):

(6.5a)

The factor 1/ ensures that the wavefunction is normalized
if the component molecular orbitals ψm are normalized. To save
the tedium of writing out large determinants, the wavefunction
is normally written by using only its principal diagonal:

Ψ = (1/Ne!)
1/2|ψ a

α(1)ψ a
β(2) . . . ψ z

β(Ne)| (6.5b)

l A BRIEF ILLUSTRATION

The Slater determinant for H2 (Ne = 2) is

where both electrons occupy the molecular wavefunction ψa.
We should recognize the spin factor as that corresponding 
to a singlet state (eqn 4.31b, σ− = (1/ 2){αβ − βα}), so Ψ
corresponds to two spin-paired electrons in ψa. l

According to the variation principle (Section 5.5), the best
form of Ψ is the one that corresponds to the lowest achievable
energy as the ψ are varied, that is, we need the wavefunctions ψ
that will minimize the expectation value ∫Ψ*@Ψ dτ. Because the
electrons interact with one another, a variation in the form of
ψa, for instance, will affect what will be the best form of all the
other ψs, so finding the best form of the ψs is a far from trivial
problem. However, D.R. Hartree and V. Fock showed that 
the optimum ψs each satisfy an at first sight very simple set of
equations:

f1ψa(1) = εaψa(1) (6.6)
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where f1 is called the Fock operator. This is the equation to solve
to find ψa; there are analogous equations for all the other occu-
pied orbitals. This Schrödinger-like equation has the form we
should expect (but its formal derivation is quite involved). Thus,
f1 has the following structure:

f1 = core hamiltonian for electron 1 (h1)
+ average Coulomb repulsion from electrons 2, 3, . . . 
(VCoulomb)
+ average correction due to spin correlation (VExchange)

= h1 + VCoulomb + VExchange

By the core hamiltonian we mean the one-electron hamiltonian
h1 defined by eqn 6.2 and representing the energy of electron 1 in
the field of the nuclei. The Coulomb repulsion from all the other
electrons contributes a term that acts as follows (Fig. 6.2):

(6.7a)

This integral represents the repulsion experienced by electron 1
in orbital ψa from electron 2 in orbital ψm, where it is distributed
with probability density ψm*ψm. There are two electrons in each
orbital, so we can expect a total contribution of the form

where the sum is over all the occupied orbitals, including orbital
a. You should be alert to the fact that counting 2 for the orbital
with m = a is incorrect, because electron 1 interacts only with the
second electron in the orbital, not with itself. This error will be
corrected in a moment. The spin correlation term takes into 
account the fact that electrons of the same spin tend to avoid
each other (Section 4.4), which reduces the net Coulomb inter-
action between them. This contribution has the following form:

(6.7b)K j
rm a m m a( ) ( ) ( ) *( ) ( )1 1 1
1

2 20
12

2ψ ψ ψ ψ τ= � d

  

V Ja m a
m
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J j
rm a a m m( ) ( ) ( ) *( ) ( )1 1 1
1

2 20
12

2ψ ψ ψ ψ τ= � d

Fig. 6.2 A schematic interpretation of the physical interpretation
of the Coulomb repulsion term, eqn 6.7a. An electron in orbital
ψa experiences repulsion from an electron in orbital ψm where it
has probability density |ψm |2.
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The equation to solve is therefore

This equation for ψa must be solved self-consistently (and
numerically) because the integral that governs the form of 
ψa requires us to know ψa already. In the following examples
we shall illustrate some of the procedures that have been
adopted. l

6.2 The Roothaan equations

The difficulty with the HF-SCF procedure lies in the numerical
solution of the Hartree–Fock equations, an onerous task even
for powerful computers. As a result, a modification of the 
technique was needed before the procedure could be of use 
to chemists. We saw in Chapter 5 how molecular orbitals are
constructed as linear combinations of atomic orbitals. This 
simple approach was adopted in 1951 by C.C.J. Roothaan and
G.G. Hall independently, who found a way to convert the
Hartree–Fock equations for the molecular orbitals into equa-
tions for the coefficients that appear in the LCAO used to 
simulate the molecular orbital. Thus, they wrote (as we did in
eqn 5.34)

(6.9)

where com are unknown coefficients and the χo are the atomic 
orbitals (which we take to be real). Note that this approximation
is in addition to those underlying the Hartree–Fock equations
because the basis is finite and so cannot reproduce the molecu-
lar orbital exactly. The size of the basis set (Nb) is not necessarily
the same as the number of atomic nuclei in the molecule (Nn),
because we might use several atomic orbitals on each nucleus
(such as the four 2s and 2p orbitals of a carbon atom). From Nb

basis functions, we obtain Nb linearly independent molecular
orbitals ψ.

We show in Justification 6.1 that the use of a linear combina-
tion like in eqn 6.9 leads to a set of simultaneous equations for
the coefficients called the Roothaan equations. These equations
are best summarized in matrix form by writing

Fc = Sc e (6.10)

where F is the Nb × Nb matrix with elements

Foo′ = �χo(1)f1χo′(1)dτ1 (6.11a)
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For a given electron 1 there is only one electron of the same spin
in all the occupied orbitals, so we can expect a total contribution
of the form

The negative sign reminds us that spin-correlation keeps elec-
trons apart, and so reduces their classical, Coulombic repulsion.
By collecting terms, we arrive at a specific expression for the
effect of the Fock operator:

(6.8)

with the sum extending over all the occupied orbitals. Note that
Ka(1)ψa(1) = Ja(1)ψa(1), so the term in the sum with m = a loses
one of its 2Ja, which is the correction that avoids the electron 
repelling itself, which we referred to above.

Equation 6.8 reveals a second principal approximation of 
the Hartree–Fock formalism (the first being its dependence on 
the orbital approximation). Instead of electron 1 (or any other
electron) responding to the instantaneous positions of the other
electrons in the molecule through terms of the form 1/r1j, it 
responds to an averaged location of the other electrons through
integrals of the kind that appear in eqn 6.7. When we look for
reasons why the formalism gives poor results, this approxima-
tion is a principal reason; it is addressed in Section 6.6.

Although eqn 6.6 is the equation we have to solve to find 
ψa, eqn 6.7 reveals that it is necessary to know all the other 
occupied wavefunctions in order to set up the operators J and 
K and hence to find ψa. To make progress with this difficulty, 
we can guess the initial form of all the one-electron wave-
functions, use them in the definition of the Coulomb and 
exchange operators, and solve the Hartree–Fock equations. 
That process is then continued using the newly found wave-
functions until each cycle of calculation leaves the energies εm

and wavefunctions ψm unchanged to within a chosen criterion.
This is the origin of the term self-consistent field (SCF) for 
this type of procedure in general and of Hartree–Fock self-
consistent field (HF-SCF) for the approach based on the orbital
approximation.

l A BRIEF ILLUSTRATION

We continue with the H2 example. According to eqn 6.6, the
Hartree–Fock equation for ψa is f1ψa(1) = εaψa(1) with

f1ψa(1) = h1ψa(1) + 2Ja(1)ψa(1) − Ka(1)ψa(1)

because there is only one term in the sum (there is only one
occupied orbital). In this expression

   
J K j
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176 6 COMPUTATIONAL CHEMISTRY

S is the Nb × Nb matrix of overlap integrals:

Soo′ = �χo(1)χo′(1)dτ1 (6.11b)

and c is an Nb × Nb matrix of all the coefficients we have to find:

(6.11c)

The first column is the set of coefficients for ψa, the second col-
umn for ψb, and so on. Finally, e is a diagonal matrix of orbital
energies εa, εb, . . . :

(6.11d)

Justification 6.1 The Roothaan equations

To construct the Roothaan equations we substitute the linear
combination of eqn 6.9 into eqn 6.6, which gives

Now multiply from the left by χo(1) and integrate over the
coordinates of electron 1:

That is,

This expression has the form of the matrix equation in 
eqn 6.10.

l A BRIEF ILLUSTRATION

In this illustration we show how to set up the Roothaan equa-
tions for H2. To do so, we adopt a basis set of real, normalized
functions χA and χB, centred on nuclei A and B, respectively.
We can think of these functions as H1s orbitals on each 
nucleus, but they could be more general than that, and in a later
illustration we shall make a computationally more friendly
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choice. The two possible linear combinations corresponding
to eqn 6.9 are

ψa = cAaχA + cBaχB ψb = cAbχA + cBbχB

so the matrix c is

and the overlap matrix S is

with S = �χA(1)χB(1)dτ1

The Fock matrix is

with Foo′ = �χo(1)f1χo′(1)dτ1

We shall explore the explicit form of the elements of F in a
later illustration; for now, we just regard them as variable
quantities. The Roothaan equations are therefore

l

l ANOTHER BRIEF ILLUSTRATION

In this continuation of the preceding illustration, we establish
the simultaneous equations corresponding to the Roothaan
equations we have just established. After multiplying out the
matrices constructed in the preceding illustration, we obtain

On equating matching elements, we obtain the following
four simultaneous equations:

FAAcAa + FABcBa = εa cAa + SεacBa

FBAcAa + FBBcBa = εa cBa + SεacAa

FAAcAb + FABcBb = εb cAb + SεbcBb

FBAcAb + FBBcBb = εb cBb + SεbcAb

Thus, to find the coefficients for the molecular orbital ψa, we
need to solve the first and second equations, which we can
write as

(FAA − εa)cAa + (FAB − Sεa)cBa = 0
(FBA − Sεa)cAa + (FBB − εa)cBa = 0

There is a similar pair of equations (the third and fourth) for
the coefficients in ψb. l
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If we write the Roothaan equations as (F − Se)c = 0 we see that
they are simply a collection of Nb simultaneous equations for the
coefficients. This point was demonstrated explicitly in the pre-
ceding illustration. Therefore, they have a solution only if

| F − eS | = 0 (6.12)

In principle, we can find the orbital energies that occur in e by
looking for the roots of this secular equation and then using
those energies to find the coefficients that make up the matrix c
by solving the Roothaan equations. There is a catch, though: the
elements of F depend on the coefficients (through the presence
of J and K in the expression for f1). Therefore, we have to pro-
ceed iteratively: we guess an initial set of values for c, solve the
secular equation for the orbital energies, use them to solve the
Roothaan equations for c, and compare the resulting values with
the ones we started with. In general they will be different, so we
use those new values in another cycle of calculation, and con-
tinue until convergence has been achieved (Fig. 6.3).

l A BRIEF ILLUSTRATION

The two simultaneous equations for the coefficients in ψa

obtained in the previous illustration have a solution if

The determinant expands to give the following equation:

(FAA − ε)(FBB − ε) − (FAB − Sε)(FBA − Sε) = 0

On collecting terms, we arrive at

(1 − S2)ε2 − (FAA + FBB − SFAB − SFBA)ε
+ (FAAFBB − FABFBA) = 0

  

F F S
F S F

AA AB

BA BB

− −
− − =ε ε

ε ε 0

This is a quadratic equation for the orbital energies ε, and
may be solved by using the quadratic formula. Thus, if we
summarize the equation as aε2 + bε + c = 0, then

With these energies established and taking the lower of the
two energies to be εa since ψa is occupied in ground-state H2,
we can construct the coefficients by using the relation

in conjunction with the normalization condition c 2
Aa + c 2

Ba

+ 2cAacBaS = 1. (For this homonuclear diatomic molecule, 
there is, of course, a much simpler method of arriving at 
cAa = cBa.) l

The principal outstanding problem is the form of the ele-
ments of the Fock matrix F and its dependence on the LCAO
coefficients. The explicit form of Foo′ is

Foo′ = �χo(1)h1χo′(1)dτ1

(6.13)

where the sums are over the occupied molecular orbitals. The
dependence of F on the coefficients can now be seen to arise from
the presence of the ψm in the two integrals, for these molecular
orbitals depend on the coefficients in their LCAOs.

l A BRIEF ILLUSTRATION

At this point we are ready to tackle the matrix elements 
that occur in the treatment of H2, using the LCAOs set up 
in a previous illustration. As we saw there, we need the four
matrix elements FAA, FAB, FBA, and FBB. We show here how to
evaluate FAA. Only one molecular orbital is occupied (ψa), so
eqn 6.13 becomes
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Fig. 6.3 The iteration procedure for a Hartree–Fock self-
consistent field calculation.
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With ψa = cAaχA + cBaχB, the second integral on the right is

From now on we shall use the notation

(6.14)

Integrals like this are fixed throughout the calculation 
because they depend only on the choice of basis, so they can be
tabulated once and for all and then used whenever required.
Our task later in this chapter will be to see how they are evalu-
ated. For the time being, we can treat them as constants. In
this notation, the integral we are evaluating becomes

= cAacAa(AA |AA) + 2cAacBa(AA |BA) + cBacBa(AA |BB)

(We have used (AA |BA) = (AA |AB).) There is a similar term
for the third integral, and overall

FAA = EA + cAa
2 (AA |AA) + 2cAacBa(AA |BA) 

+ cBa
2 {2(AA |BB) − (AB |BA)}

where

EA = �χA(1)h1χA(1)dτ1 (6.15)

is the energy of an electron in orbital χA based on nucleus A,
taking into account its interaction with both nuclei. Similar
expressions may be derived for the other three matrix ele-
ments of F. The crucial point, though, is that we now see how
F depends on the coefficients that we are trying to find. l

Self-test 6.1 Construct the element FAB using the same basis.

J
L  + − +{ ( ) ( )} ( )c c ca a aA B BBA AB AA BB BA BB3 2| | |

   
F h c aAB A B Ad BA AA= +�χ χ τ( ) ( ) ( )1 11 1

2 |G
I

   
j

r a a0
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1 21 1
1

2 2�χ χ ψ ψ τ τA A d d( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )AB CD d dA B C D| = j
r0
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1

2 2�χ χ χ χ τ τ
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ra aA B A A A B d d0
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1 21 1
1

2 2�χ χ χ χ τ τ .. . .

   
= c c j
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6.3 Basis sets

One of the problems with molecular structure calculations 
now becomes apparent. The basis functions appearing in 
eqn 6.14 may in general be centred on different atomic nuclei 
so (AB | CD) is in general a so-called ‘four-centre, two-electron 
integral’. If there are several dozen basis functions used to build
the one-electron wavefunctions, there will be tens of thousands
of integrals of this form to evaluate (the number of integrals 
increases as N b

4). The efficient calculation of such integrals poses
the greatest challenge in an HF-SCF calculation but can be alle-
viated by a clever choice of basis functions.

The simplest approach is to use a minimal basis set, in which
one basis function is used to represent each of the orbitals in 
an elementary valence theory treatment of the molecule, that is, 
we include in the basis set one function each for H and He 
(to simulate a 1s orbital), five functions each for Li to Ne (for the
1s, 2s, and three 2p orbitals), nine functions each for Na to Ar,
and so on. For example, a minimal basis set for CH4 consists of
nine functions: four basis functions to represent the four H1s
orbitals, and one basis function each for the 1s, 2s, 2px, 2py, and
2pz orbitals of carbon. Unfortunately, minimal basis set calcula-
tions frequently yield results that are far from agreement with
experiment.

Significant improvements in the agreement between electronic
structure calculations and experiment can often be achieved 
by increasing the number of basis set functions. In a double-zeta
(DZ) basis set, each basis function in the minimal basis is re-
placed by two functions; in a triple-zeta (TZ) basis set, by three
functions. For example, a double-zeta basis for H2O consists of
fourteen functions: a total of four basis functions to represent
the two H1s orbitals, and two basis set functions each for the 1s,
2s, 2px, 2py, and 2pz orbitals of oxygen. In a split-valence (SV)
basis set, each inner-shell (core) atomic orbital is represented by
one basis set function and each valence atomic orbital by two
basis set functions; an SV calculation for H2O, for instance, uses
thirteen basis set functions. Further improvements to the accur-
acy of electronic structure calculations can often be achieved by
including polarization functions in the basis; these functions
represent atomic orbitals with higher values of the orbital angular
momentum quantum number l than considered in an elementary
valence theory treatment. For example, polarization functions
in a calculation for CH4 include basis functions representing d
orbitals on carbon or p orbitals on hydrogen. Polarization func-
tions often lead to improved results because atomic orbitals are
distorted (or polarized) by adjacent atoms when bonds form in
molecules.

One of the earliest choices for basis set functions was that of
Slater-type orbitals (STO) centred on each of the atomic nuclei
in the molecule and of the form

χ = Nr ae−brYlml
(θ,φ) (6.16)
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N is a normalization constant, a and b are (non-negative) 
parameters, Ylml

is a spherical harmonic (Table 3.2), and (r,θ,φ)
are the spherical polar coordinates describing the location of 
the electron relative to the atomic nucleus. Several such basis
functions are typically centred on each atom, with each basis
function characterized by a unique set of values of a, b, l, and ml.
The values of a and b generally vary with the element and there
are several rules for assigning reasonable values. For molecules
containing hydrogen, there is an STO centred on each proton
with a = 0 and b = 1/a0, which simulates the correct behaviour of
the 1s orbital at the nucleus (see eqn 4.14). However, using the
STO basis set in HF-SCF calculations on molecules with three 
or more atoms requires the evaluation of so many two-electron
integrals (AB | CD) that the procedure becomes computationally
impractical.

The introduction of Gaussian-type orbitals (GTO) by S.F.
Boys largely overcame the problem. Cartesian Gaussian func-
tions centred on atomic nuclei have the form

χ = Nxiy jzke−αr2
(6.17)

where (x,y,z) are the Cartesian coordinates of the electron at 
a distance r from the nucleus, (i,j,k) are a set of non-negative 

integers, and α is a positive constant. An s-type Gaussian has i =
j = k = 0; a p-type Gaussian has i + j + k = 1; a d-type Gaussian has
i + j + k = 2 and so on. Figure 6.4 shows contour plots for various
Gaussian-type orbitals. The advantage of GTOs is that the prod-
uct of two Gaussian functions on different centres is equivalent
to a single Gaussian function located at a point between the two
centres (Fig. 6.5). Therefore, two-electron integrals on three and
four different atomic centres can be reduced to integrals over two
different centres, which are much easier to evaluate numerically.

l A BRIEF ILLUSTRATION

There are no four-centre integrals in H2, but we can illustrate
the principle by considering one of the two-centre integrals
that appear in the Fock matrix and, to be definite, we consider

We choose an s-type Gaussian basis and write

χA(1) = Ne−α|r1−RA|2 χB(1) = Ne−α|r1−RB| 2

where r1 is the coordinate of electron 1 and RI is the coordin-
ate of nucleus I. The product of two such Gaussians, one 
centred on A and one centred on B, for electron 1, is

χA(1)χB(1) = N2e−α|r1−RA|2
e−α |r1−RB|2 = N2e−α{|r1−RA|2+|r1−RB|2}

By using the relation

|r − R |2 = (r − R) · (r − R) = |r|2 + |R |2 − 2r · R

we can confirm that 

|r1 − RA |2 + |r1 − RB |2 = 1–2R2 + 2 |r1 − R0 |2

where R0 = 1–2(RA + RB) is the midpoint of the molecule and 
R = |RA − RB | is the bond length. Hence

χA(1)χB(1) = N2e− 1–2αR2
e−2α| r1−R0 | 2

The product χA(2)χB(2) is the same, except for the index on
r. Therefore, the two-centre, two-electron integral (AB |AB)
reduces to

This is a single-centre two-electron integral, with both expon-
ential functions spherically symmetrical Gaussians centred
on the midpoint of the bond, and much faster to evaluate
than the original two-centre integral. l

Some of the basis sets that employ Gaussian functions and are
commonly used in electronic structure calculations are given in
Table 6.1. An STO-NG basis is a minimal basis set in which each
basis function is itself a linear combination of N Gaussians; the
STO in the name of the basis reflects the fact that each linear
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Fig. 6.4 Contour plots for Gaussian-type orbitals. (a) s-type
Gaussian, e−r 2

; (b) p-type Gaussian xe−r 2
; (c) d-type Gaussian,

xye−r 2
.

Fig. 6.5 The product of two Gaussian functions on different
centres is itself a Gaussian function located at a point between
the two contributing Gaussians. The scale of the product has
been increased relative to that of its two components.
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combination is chosen by a least-squares fit to a Slater-type
function. An m-npG basis is a split-valence basis set in which
each core atomic orbital is represented by one function (a linear
combination of m Gaussians) and each valence orbital is repre-
sented by two basis functions, one a linear combination of n
Gaussians and the other of p Gaussian functions. The addition
of d-type polarization functions for non-hydrogen atoms to the
m-npG basis yields an m-npG* basis; further addition of p-type
polarization functions for hydrogen atoms results in an m-
npG** basis set. In an m-npqG basis, each valence atomic orbital
is represented by three basis functions, linear combinations of n,
p, and q Gaussians, respectively. Addition of diffuse (small α-
valued, eqn 6.17) s- and p-type Gaussians on non-hydrogen
atoms results in an m-npq+G basis set; additional diffuse func-
tions to hydrogen, m-npq++G. A considerable amount of work
has gone into the development of efficient basis sets and this is
still an active area of research.

We have arrived at the point where we can see that the
Hartree–Fock approach, coupled with the use of basis set func-
tions, requires the evaluation of a large number of integrals.
There are two approaches commonly taken at this point. In

semiempirical methods, the integrals encountered are either set
to zero or estimated from experimental data. In ab initio methods,
an attempt is made to evaluate the integrals numerically, using
as input only the values of fundamental constants and atomic
numbers of the atoms present in the molecule.

The first approach: semiempirical
methods

In semiempirical methods, many of the integrals that occur in 
a calculation are estimated by appealing to spectroscopic data 
or physical properties such as ionization energies, or by using a
series of rules to set certain integrals equal to zero. These methods
are applied routinely to molecules containing large numbers of
atoms because of their computational speed but there is often a
sacrifice in the accuracy of the results.

6.4 The Hückel method revisited

Semiempirical methods were first developed for conjugated π
systems, the most famous semiempirical procedure being Hückel
molecular orbital theory (HMO theory, Section 5.6).

The initial assumption of HMO theory is the separate treat-
ment of π and σ electrons, which is justified by the different 
energies and symmetries of the orbitals. The secular determin-
ant, from which the π-orbital energies and wavefunctions are
obtained, has a form similar to that of eqn 6.12 and is written 
in terms of overlap integrals and hamiltonian matrix elements.
The overlap integrals are set to 0 or 1, the diagonal hamilton-
ian matrix elements are set to a parameter α, and off-diagonal
elements either to 0 or the parameter β. The HMO approach is
useful for qualitative, rather than quantitative, discussions of
conjugated π systems because it treats repulsions between elec-
trons very poorly.

l A BRIEF ILLUSTRATION

Here we return to the third illustration of Section 6.2 and set
S = 0. The diagonal Fock matrix elements are set equal to α
(that is, we set FAA = FBB = α), and the off-diagonal elements
are set equal to β (that is, we set FAB = FBA = β). Note that the
dependence of these integrals on the coefficients is swept
aside, so we do not have to work towards self-consistency.
The quadratic equation for the energies

(1 − S2)ε2 − (FAA + FBB − SFAB − SFBA)ε
+ (FAAFBB − FABFBA) = 0

becomes simply

ε2 − 2αε + α2 − β2 = 0

and the roots are ε = α ± β, exactly as we found in Section 5.6. l

Table 6.1 Basis set designations and example basis sets for H2O

General basis Example basis Basis functions

STO-NG STO-3G For each O 1s, 2s, 2px, 2py, 2pz and H 1s
orbital:

One function, a linear combination of 3 
Gaussians

m-npG 6-31G For O 1s orbital:

One linear combination of 6 Gaussians

For each O 2s, 2px, 2py, 2pz and H 1s
orbital:

2 functions:

– One Gaussian function

– One linear combination of 3
Gaussians

m-npG* 6-31G* 6-31G plus d-type polarization functions
on O

m-npG** 6-31G** 6-31G* plus p-type polarization functions
on each H

m-npqG 6-311G 6-31G plus an additional Gaussian for
each

O 2s, 2px, 2py, 2pz and H 1s orbital

m-npq+G 6-311+G 6-311G plus diffuse s- and p-type
Gaussians on O

m-npq++G 6-311++G 6-311+G plus diffuse Gaussians on each H

m-npq+G* 6-311+G* 6-311+G plus d-type polarization
functions on O

m-npq+G** 6-311+G** 6-311+G* plus p-type polarization
functions on each H
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6.5 Differential overlap

In the second most primitive and severe approach, called com-
plete neglect of differential overlap (CNDO), all two-electron
integrals of the form (AB |CD) are set to zero unless χA and χB

are the same, and likewise for χC and χD. That is, only integrals
of the form (AA |CC) survive and they are often taken to be para-
meters with values adjusted until the calculated energies are in
agreement with experiment. The origin of the term ‘differential
overlap’ is that what we normally take to be a measure of ‘over-
lap’ is the integral ∫χAχBdτ. The differential of an integral of a
function is the function itself, so in this sense the ‘differential’
overlap is the product χAχB. The implication is that we then 
simply compare orbitals: if they are the same, the integral is 
retained; if different, it is discarded.

l A BRIEF ILLUSTRATION

The expression for FAA derived in the final illustration in
Section 6.2 is

FAA = EA + cAa
2 (AA |AA) + 2cAacBa(AA |BA) 

+ cBa
2 {2(AA |BB) − (AB |BA)}

The last integral has the form

The ‘differential overlap’ term χA(1)χB(1) is set equal to zero,
so in the CNDO approximation the integral is set equal to
zero. The same is true of the integral (AA |BA). It follows that
we write

FAA ≈ EA + cAa
2 (AA |AA) + 2cBa

2 (AA |BB)

and identify the surviving two two-electron integrals as 
empirical parameters. l

Self-test 6.2 Apply the CNDO approximation to FAB for the
same system.

[FAB = �χA(1)h1χB(1)dτ1 − cAacBb(AA |BB)]

More recent semiempirical methods make less draconian 
decisions about which integrals are to be ignored, but they are all
descendants of the early CNDO technique. Whereas CNDO sets
integrals of the form (AB |AB) to zero for all different χA and χB,
intermediate neglect of differential overlap (INDO) does not
neglect the (AB |AB) for which different basis functions χA and
χB are centred on the same nucleus. Because these integrals are
important for explaining energy differences between terms cor-
responding to the same electronic configuration, INDO is much
preferred over CNDO for spectroscopic investigations. A still

   
( ) ( ) ( ) ( ) ( )AB BA d dA B B A| = j

r0
12

1 21 1
1

2 2�χ χ χ χ τ τ

less severe approximation is neglect of diatomic differential
overlap (NDDO) in which (AB |CD) is neglected only when χA

and χB are centred on different nuclei or when χC and χD are
centred on different nuclei.

There are other semiempirical methods, with names such as
modified intermediate neglect of differential overlap (MINDO),
modified neglect of differential overlap (MNDO), Austin model 1
(AM1), PM3, and pairwise distance directed Gaussian (PDDG).
In each case, the values of integrals are either set to zero or set to
parameters with values that have been determined by attempt-
ing to optimize agreement with experiment, such as measured
values of enthalpies of formation, dipole moments, and ioniza-
tion energies. MINDO is useful for the study of hydrocarbons; it
tends to give more accurate computed results than MNDO but
it gives poor results for systems with hydrogen bonds. AM1,
PM3, and PDDG are improved versions of MNDO.

The second approach: ab initio
methods

In ab initio methods, the two-electron integrals are evaluated
numerically. However, even for small molecules, Hartree–Fock
calculations with large basis sets and efficient and accurate cal-
culation of two-electron integrals can give very poor results 
because they are rooted in the orbital approximation and the 
average effect of the other electrons on the electron of interest.
Thus, the true wavefunction for H2 is a function of the form
Ψ(r1,r2), with a complicated behaviour as r1 and r2 vary and per-
haps approach one another. This complexity is lost when we
write the wavefunction as a simple product of two functions,
ψ(r1)ψ(r2) and treat each electron as moving in the average 
field of the other electrons. That is, the approximations of the
Hartree–Fock method imply that no attempt is made to take
into account electron correlation, the tendency of electrons to
stay apart in order to minimize their mutual repulsion. Most
modern work in electronic structure, such as the approaches
discussed in the following two sections as well as more sophistic-
ated approaches that are beyond the scope of this text, tries to
take electron correlation into account.

6.6 Configuration interaction

When we work through the formalism described so far using 
a basis set of Nb orbitals, we generate Nb molecular orbitals.
However, if there are Ne electrons to accommodate, in the
ground state only 1–2Ne of these Nb orbitals are occupied, leaving
Nb − 1–2Ne so-called virtual orbitals unoccupied. The ground
state is

Ψ0 = (1/Ne!)
1/2 |ψ a

α(1)ψ a
β(2)ψ b

α(3)ψb
β(4) . . . ψu

β(Ne) |
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where ψu is the HOMO (Section 5.6). We can envisage trans-
ferring an electron from an occupied orbital to a virtual orbital
ψv, and forming the corresponding singly excited determinant,
such as

Ψ1 = (1/Ne!)
1/2 |ψ a

α(1)ψ a
β(2)ψ b

α(3)ψ v
β(4) . . . ψu

β(Ne) |

Here a β electron, ‘electron 4’, has been promoted from ψb into
ψv, but there are many other possible choices. We can also envis-
age doubly excited determinants, and so on. Each of the Slater
determinants constructed in this way is called a configuration
state function (CSF).

Now we come to the point of introducing these CSFs. In 
1959 P.-O. Löwdin proved that the exact wavefunction (within
the Born–Oppenheimer approximation) can be expressed as a 
linear combination of CSFs found from the exact solution of 
the Hartree–Fock equations:

Ψ = C0Ψ0( ) + C1Ψ1( ) + C2Ψ2( ) + . . . (6.18)

The inclusion of CSFs to improve the wavefunction in this way
is called configuration interaction (CI). Configuration inter-
action can, at least in principle, yield the exact ground-state
wavefunction and energy and thus accounts for the electron 
correlation neglected in Hartree–Fock methods. However, the
wavefunction and energy are exact only if an infinite number of
CSFs are used in the expansion in eqn 6.18; in practice, we are
resigned to using a finite number of CSFs.

l A BRIEF ILLUSTRATION

We can begin to appreciate why CI improves the wavefunc-
tion of a molecule by considering H2 again. We saw in the
first illustration in Section 6.1 that, after expanding the Slater
determinant, the ground state is

Ψ0 = ψa(1)ψa(2)σ−(1,2)

where σ−(1,2) is the singlet spin state wavefunction. We also
know that if we use a minimal basis set and ignore overlap, we
can write ψa = (1/ 2){χA + χB}. Therefore

Ψ0 = 1–2{χA(1) + χB(1)}{χA(2) + χB(2)}σ−(1,2) 

= 1–2{χA(1)χA(2) + χA(1)χB(2) + χB(1)χA(2) 

+ χB(1)χB(2)}σ−(1,2)

We can see a deficiency in this wavefunction: there are equal
probabilities of finding both electrons on A (the first term) or
on B (the fourth term) as there are for finding one electron on
A and the other on B (the second and third terms). That is,
electron correlation has not been taken into account and we
can expect the calculated energy to be too high.

From two basis functions we can construct two molecular
orbitals: we denote the second one ψb = (1/ 2){χA − χB}. We
need not consider the singly excited determinant constructed
by moving one electron from ψa to ψb because it will be of

ungerade symmetry and therefore not contribute to the gerade
ground state of dihydrogen. A doubly excited determinant
based on ψb would be

Ψ2 = ψb(1)ψb(2)σ−(1,2)
= 1–2{χA(1) − χB(1)}{χA(2) − χB(2)}σ−(1,2)
= 1–2{χA(1)χA(2) − χA(1)χB(2) − χB(1)χA(2) 

+ χB(1)χB(2)}σ−(1,2)

If we were simply to subtract one CSF from the other, the
outer terms would cancel and we would be left with

Ψ0 − Ψ2 = {χA(1)χB(2) + χB(1)χA(2)}σ−(1,2)

According to this wavefunction, the two electrons will never
be found on the same atom: we have overcompensated for
electron configuration. The obvious middle-ground is to
form the linear combination Ψ = C0Ψ0 + C2Ψ2 and look for
the values of the coefficients that minimize the energy. l

The illustration shows that even a limited amount of CI can
introduce some electron correlation; full CI—using orbitals
built from a finite basis and allowing for all possible excitations
—will take electron correlation into account more fully. The 
optimum procedure, using orbitals that form an infinite basis
and allowing all excitations, is computationally impractical.

The optimum expansion coefficients in eqn 6.18 are found 
by using the variation principle; as in Justification 6.1 for the
Hartree–Fock method, application of the variation principle for
CI results in a set of simultaneous equations for the expansion
coefficients.

l A BRIEF ILLUSTRATION

If we take the linear combination Ψ = C0Ψ0 + C2Ψ2, the usual
procedure for the variation method (Section 5.5) leads to the
secular equation |H − ES | = 0, from which we can find the 
improved energy. Specifically:

and the secular equation we must solve to find E is (note that
S02 = S20 and that H02 = H20 due to hermiticity)

which is easily rearranged into a quadratic equation for E. As
usual, the problem boils down to an evaluation of various 
integrals that appear in the matrix elements.

  = − − − − =( )( ) ( )H ES H ES H ES00 00 22 22 02 02
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Because the core hamiltonian in the Fock operator in eqn 6.8
cancels the one-electron terms in the full hamiltonian, the 
perturbation is the difference between the instantaneous inter-
action between the electrons (the third term in eqn 6.1) and the
average interaction (as represented by the operators J and K in
the Fock operator). Thus, for electron 1

(6.20)

where the first sum (the true interaction) is over all the electrons
other than electron 1 itself and the second sum (the average 
interaction) is over all the occupied orbitals. This choice was first
made by C. Møller and M.S. Plesset in 1934 and the method is
called Møller–Plesset perturbation theory (MPPT). Applications
of MPPT to molecular systems were not undertaken until the
1970s and the rise of sufficient computing power.

As usual in perturbation theory, the true wavefunction is
written as a sum of the eigenfunction of the model hamiltonian
and higher-order correction terms. The correlation energy, the
difference between the true energy and the HF energy, is given
by energy corrections that are second order and higher. If we
suppose that the true wavefunction of the system is given by a
sum of CSFs like that in eqn 6.18, then (see eqn 2.35)

(6.21)

According to Brillouin’s theorem, only doubly excited Slater 
determinants have nonzero @ (1) matrix elements and hence
only they make a contribution to E 0

(2). The identification of the
second-order energy correction with the correlation energy is
the basis of the MPPT method denoted MP2. The extension of
MPPT to include third- and fourth-order energy corrections are
denoted MP3 and MP4, respectively.

l A BRIEF ILLUSTRATION

According to Brillouin’s theorem, and for our simple model
of H2 built from two basis orbitals, we write

Ψ = C0Ψ0 + C2Ψ2 with Ψ0 = ψa(1)ψa(2)σ−(1,2) 
Ψ2 = ψb(1)ψb(2)σ−(1,2)

The only matrix element we need for the sum in eqn 6.21 is

All the integrals over terms based on J and K are zero because
these are one-electron operators and so either ψa(1) or ψa(2)
is left unchanged and its orthogonality to ψb ensures that the
integral vanishes. We now expand each molecular orbital in
terms of the basis functions χA and χB, and obtain

�Ψ2 @(1)Ψ0dτ1dτ2 = cAb
2 cAa

2 (AA |AA) 

+ cAbcBbcAa
2 (BA |AA) + . . . + cBb

2 cAb
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The molecular orbitals ψa and ψb are orthogonal, so S is 
diagonal and, provided ψa and ψb are normalized, S00 = S22 = 1.
To evaluate the hamiltonian matrix elements, we first write
the hamiltonian as in eqn 6.3 (@ = h1 + h2 + j0/r12), where h1

and h2 are the core hamiltonians for electrons 1 and 2, 
respectively, and so

The first term in this integral (noting that the spin states are
normalized) is:

�Ψ0h1Ψ0dτ1dτ2 = �ψa(1)ψa(2)h1ψa(1)ψa(2)dτ1dτ2

= �ψa(1)h1ψa(1)dτ1

Similarly,

�Ψ0h2Ψ0dτ1dτ2 = �ψa(2)h2ψa(2)dτ2

For the electron–electron repulsion term, using the notation
of eqn 6.14,

= cAa
4 (AA |AA) + cAa

3 cBa(AA |AB) + . . . + cBa
4 (BB |BB) 

Expressions of a similar kind can be developed for the other
three elements of H, so the optimum energy can be found by
substituting the calculated values of the coefficients and the
integrals into the expression for the roots of the quadratic
equation for E. The coefficients in the CI expression for Ψ
can then be found in the normal way by using the lowest
value of E and solving the secular equations. l

6.7 Many-body perturbation theory

The application of perturbation theory to a molecular system of
interacting electrons and nuclei is called many-body perturba-
tion theory. Recall from discussions of perturbation theory in
Chapter 2 (see eqn 2.31) that the hamiltonian is expressed as a
sum of a simple, ‘model’ hamiltonian, @ (0), and a perturbation
@ (1). Because we wish to find the correlation energy, a natural
choice for the model hamiltonian are the Fock operators of the
HF-SCF method and for the perturbation we take the difference
between the Fock operators and the true many-electron hamil-
tonian (eqn 6.1). That is,

@ = @ (0) + @ (1) with (6.19)@( )0
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If we ignore overlap the coefficients are all equal to ±1/ 2,
and if we use symmetries like (AA |AB) = (AA |BA) and
(AA |AB) = (BB |BA), this expression simplifies to

�Ψ2 @(1)Ψ0dτ1dτ2 = 1–2{(AA |AA) − (AA |BB)}

It follows that the second-order estimate of the correlation
energy is

The term (AA |AA) − (AA |BB) is the difference in repulsion
energy between both electrons being confined to one atom
and each being on a different atom. l

The third approach: density
functional theory

A technique that has gained considerable ground in recent 
years to become one of the most widely used procedures for the
calculation of molecular structure is density functional theory
(DFT). Its advantages include less demanding computational
effort, less computer time, and—in some cases, particularly for
d-metal complexes—better agreement with experimental values
than is obtained from Hartree–Fock based methods.

6.8 The Kohn–Sham equations

The central focus of DFT is not the wavefunction but the 
electron probability density, ρ (Section 1.5). The ‘functional’
part of the name comes from the fact that the energy of the
molecule is a function of the electron density and the electron
density is itself a function of the positions of the electrons, ρ(r).
In mathematics a function of a function is called a functional,
and in this specific case we write the energy as the functional
E[ρ]. We have encountered a functional before but did not use
this terminology: the expectation value of the hamiltonian is 
the energy expressed as a functional of the wavefunction, for a
single value of the energy, E[ψ], is associated with each function
ψ. An important point to note is that because E[ψ] is an integral
of ψHψ over all space, it has contributions from the whole range 
of values of ψ.

Simply from the structure of the hamiltonian in eqn 6.1 we
can suspect that the energy of a molecule can be expressed as
contributions from the kinetic energy, the electron–nucleus 
interaction, and the electron–electron interaction. The first two
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contributions depend on the electron density distribution. The
electron–electron interaction is likely to depend on the same
quantity, but we have to be prepared for there to be a modifica-
tion of the classical electron–electron interaction due to electron
exchange (the contribution which in Hartree–Fock theory is ex-
pressed by K). That the exchange contribution can be expressed
in terms of the electron density is not at all obvious, but in 1964
P. Hohenberg and W. Kohn were able to prove that the exact
ground-state energy of an Ne-electron molecule is uniquely 
determined by the electron probability density. They showed
that it is possible to write

E[ρ] = EClassical[ρ] + EXC[ρ] (6.22)

where EClassical[ρ] is the sum of the contributions of kinetic 
energy, electron–nucleus interactions, and the classical electron–
electron potential energy, and EXC[ρ] is the exchange–correlation
energy. This term takes into account all the non-classical 
electron–electron effects due to spin and applies small corrections 
to the kinetic energy part of EClassical that arise from electron–
electron interactions. The Hohenberg–Kohn theorem guarantees
the existence of EXC[ρ] but—like so many existence theorems in
mathematics—gives no clue about how it should be calculated.

The first step in the implementation of this approach is to 
calculate the electron density. The relevant equations were 
deduced by Kohn and L.J. Sham in 1965, who showed that ρ can
be expressed as a contribution from each electron present in the
molecule, and written

(6.23)

ψi is called a Kohn–Sham orbital and is a solution of the
Kohn–Sham equation, which closely resembles the form of the
Schrödinger equation (on which it is based). For a two-electron
system,

(6.24)

The first term is the usual core term, the second term is the 
classical interaction between electron 1 and electron 2, and the
third term takes exchange effects into account and is called 
the exchange–correlation potential. The εi are the Kohn–Sham
orbital energies.

6.9 The exchange–correlation energy

The exchange–correlation potential plays a central role in DFT
and can be calculated once we know the exchange–correlation
energy EXC[ρ] by forming the following ‘functional derivative’:

(6.25)
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A functional derivative is defined like an ordinary derivative, but
we have to remember that EXC[ρ] is a quantity that gets its value
from the entire range of values of ρ(r), not just from a single
point. Thus, when r undergoes a small change dr, the density
changes by δρ to ρ(r + dr) at each point and EXC[ρ] undergoes a
change that is the sum (integral) of all such changes:

Note that VXC is an ordinary function of r, not a functional: it 
is the local contribution to the integral that defines the global 
dependence of EXC[ρ] on δρ throughout the range of integration.

l A BRIEF ILLUSTRATION

The greatest challenge in density functional theory is to find
an accurate expression for the exchange–correlation energy.
One widely used but approximate form for EXC[ρ] is based
on the model of a uniform electron gas, a hypothetical elec-
trically neutral system in which electrons move in a space of
continuous and uniform distribution of positive charge. For
a uniform electron gas, the exchange–correlation energy can
be written as the sum of an exchange contribution and a cor-
relation contribution. The latter is a complicated functional
that is beyond the scope of this chapter; we ignore it here.
Then the exchange–correlation energy is

EXC[ρ] = �Aρ4/3dr with A = –(9/8)(3/π)1/2j0

When the density changes from ρ(r) to ρ(r) + δρ(r) at 
each point (Fig. 6.6), the functional changes from EXC[ρ] to
EXC[ρ + δρ]:

EXC[ρ + δρ] = �A(ρ + δρ)4/3dr

    
δ

δ
δ

δ δE
E

VXC
XC

XCd d[ ]
[ ]

( )ρ
ρ

ρ
ρ ρ= =� �r r r

The integrand can be expanded in a Taylor series (Mathem-
atical background 1) and, discarding terms of order δρ2 and
higher, we obtain:

EXC[ρ + δρ] = �(Aρ4/3 + 4–3Aρ1/3δρ)dr

= EXC[ρ] + � 4–3Aρ1/3δρdr

Therefore, the differential δEXC of the functional (the differ-
ence EXC[ρ + δρ] − EXC[ρ] that depends linearly on δρ) is

δEXC[ρ] = � 4–3Aρ1/3δρdr

and therefore

VXC(r) = 4–3Aρ(r)1/3 = − 3–2(3/π)1/3j0ρ(r)1/3 (6.26) l

Self-test 6.3 Find the exchange–correlation potential if the
exchange–correlation energy is given by EXC[ρ] = ∫Bρ2dr.

[VXC(r) = 2Bρ(r)]

The Kohn–Sham equations must be solved iteratively and
self-consistently (Fig. 6.7). First, we guess the electron density; it
is common to use a superposition of atomic electron probability
densities. Second, the exchange–correlation potential is calcu-
lated by assuming an approximate form of the dependence 
of the exchange–correlation energy on the electron density and
evaluating the functional derivative. Next, the Kohn–Sham
equations are solved to obtain an initial set of Kohn–Sham 
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Fig. 6.6 The change in the exchange–correlation energy
functional from EXC[ρ] to EXC[ρ + δρ] (the area under each
curve) as the density changes from ρ to ρ + δρ at each point r.
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Fig. 6.7 The iteration procedure for solving the Kohn–Sham
equations in density functional theory.
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orbitals. This set of orbitals is used to obtain a better approx-
imation to the electron probability density (from eqn 6.23) and
the process is repeated until the density remains constant to
within some specified tolerance. The electronic energy is then
computed by using eqn 6.22.

As is the case for the Hartree–Fock one-electron wavefunc-
tions, the Kohn–Sham orbitals can be expanded using a set of
basis functions; solving eqn 6.24 then amounts to finding the
coefficients in the expansion. Various basis functions, including
Slater-type and Gaussian-type orbitals, can be used. Whereas
Hartree–Fock methods have computational times that scale as
N b

4, DFT methods scale as N b
3. Therefore, DFT methods are

computationally more efficient, though not necessarily more 
accurate, than HF methods.

l A BRIEF ILLUSTRATION

In applying DFT to molecular hydrogen, we begin by 
assuming that the electron density is a sum of atomic 
electron densities arising from the presence of electrons in 
the atomic orbitals χA and χB (which may be STOs or GTOs)
and write ρ(r) = |χA |2 + |χB |2 for each electron. For the 
exchange–correlation energy EXC we use the form appropriate
to a uniform electron gas and the corresponding exchange–
correlation potential derived in the previous illustration 
(eqn 6.26).

The Kohn–Sham orbital for the molecule is a solution of 

We insert the ρ(r1) and ρ(r2) we have assumed and solve this
equation numerically for ψ1. Once we have that orbital, we
replace our original guess at the electron density by ρ(r) =
|ψ1(r)|2. This density is then substituted back into the
Kohn–Sham equation to obtain an improved function ψ1(r)
and the process repeated until the density and exchange–
correlation energy are unchanged to within a specified toler-
ance on successive iterations.

When convergence of the iterations has been achieved, the
electronic energy (eqn 6.22) is calculated from

where the first term is the sum of the energies of the two 
electrons in the field of the two nuclei, the second term is the
electron–electron repulsion, and the final term includes the
correction due to nonclassical electron–electron effects. l
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Current achievements

Electronic structure calculations provide valuable informa-
tion about a wide range of important physical and chemical 
properties. One of the most important is the equilibrium mole-
cular geometry, the arrangement of atoms that results in the
lowest energy for the molecule. The calculation of equilibrium
bond lengths and bond angles supplements experimental data 
obtained from structural studies such as X-ray crystallography
(Section 9.3), electron diffraction (Section 9.4), and micro-
wave spectroscopy (Section 10.3). Furthermore, analyses of the
molecular potential energy curve can yield vibrational frequen-
cies for comparison with results from infrared spectroscopy
(Section 10.6) as well as molecular dipole moments.

6.10 Comparison of calculations and
experiments

The choice of an electronic structure method to solve a chemical
problem is not usually an easy task. Both the chemical accuracy
associated with the method and the cost of the calculation 
(in terms of computational speed and memory) must be taken
into account. An ab initio method such as full CI or MP2, each
of which is capable of yielding accurate results on a molecule
with a small number of atoms and electrons, is often computa-
tionally impractical for many-electron molecules. In contrast, a
semiempirical or DFT calculation might make an electronic
structure calculation on the large molecule feasible but with an
accompanying sacrifice in reliability. Indeed, no single method-
ology has been found to be applicable to all molecules. However,
the promise that computational chemistry has to enhance our
ability to predict chemical and physical properties of a wide
range of molecules is sufficient to drive further development of
electronic structure methods.

First consider molecular hydrogen, the subject of most of the
illustrations in this chapter. To compare results from different
electronic structure methods, we need to say a few words about
the basis set used in the calculations. A minimal basis set uses the
fewest possible basis set functions (Section 6.3). However, the
Hartree–Fock limit is achieved by the use of an infinite number
of basis functions. Although this limit is not computationally 
attainable, a finite basis is considered to have reached the limit 
if the energy, equilibrium geometry, and other calculated 
properties have converged and do not vary within a specified 
tolerance upon further increases in the size of the basis set. The
results presented for Hartee–Fock calculations that use such a
basis set are labelled ‘HF limit’ in the accompanying tables. (In
practice, the ‘HF-limit’ in the tables corresponds to a 6-311+G**
basis; see Table 6.1.) So that we can compare different electronic
structure methods more directly, we report literature results
where the same or a similar basis set was used in the different
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types of calculations. The density functional theory calculations
to which we refer all used the exchange–correlation potential for
a uniform electron gas, including the correlation component
neglected in the first illustration of Section 6.9.

Table 6.2 compares the equilibrium bond length for dihydro-
gen determined from various electronic structure methods; 
the equilibrium geometry corresponds to the minimum in the
calculated molecular potential energy. Not surprisingly, the CI
and MPPT ab initio methods are the most accurate. However,
for this simple molecule the Hartree–Fock result is also within
chemical accuracy (about 1 pm); the semiempirical methods do
not fare as well by comparison but, as also shown in Table 6.2,
MNDO and PM3 are more accurate for calculations on water
than on dihydrogen. The CI and MP2 methods also achieve
chemical accuracy (within 1°) for the bond angle in water. As for
the dipole moment of water, the semiempirical methods are
found to be slightly more accurate than the Hartree–Fock and
density-functional calculations.

Table 6.3 shows some results from semiempirical, MPPT, and
DFT calculations of carbon–carbon bond lengths in a variety of

small organic molecules as well as the C=C stretching wave-
numbers in the alkenes. As we shall see in Section 10.7, vibrational
wavenumbers depend on the ‘force constants’ for displacements
from the equilibrium geometry, and they in turn depend on the
second derivatives of the potential energy with respect to the dis-
placement. The methods generally do a good job of predicting
bond lengths of the single and double bonds and, even though
the semiempirical methods do not perform as well in calculating
vibrational wavenumbers, the results from Table 6.3 do give us a
reasonable level of confidence in the predictive abilities of DFT
and semiempirical calculations.

Confidence in DFT and semiempirical methods becomes 
particularly important when the cost of computations makes ab
initio methods impractical; such is the case for typical inorganic
and organometallic compounds. Hartree–Fock methods gener-
ally perform poorly for d-metal complexes and ab initio methods
can be prohibitively costly. However, DFT and semiempirical
methods (such as PM3, which includes parameters for most d
metals) have vastly improved the performance of applications of
electronic structure theory to inorganic chemistry.

6.11 Applications to larger molecules

In the area of thermodynamics, computational chemistry is 
becoming the technique of choice for estimating the enthalpies
of formation (Section 14.8) of molecules with complex three-
dimensional structures. It also opens the way to exploring the
effect of solvation on enthalpies of formation by calculating 
the enthalpy of formation in the gas phase and then including
several solvent molecules around the solute molecule. The 
numerical results should currently be treated as only estimates
with the primary purpose of predicting whether interactions
with the solvent increase or decrease the enthalpy of formation.
As an example, consider the amino acid glycine, which can exist
in a neutral (NH2CH2COOH) or zwitterionic (+NH3CH2CO2

−)
form. It has been found computationally that, whereas in the gas
phase the neutral form has a lower enthalpy of formation than
the zwitterion, in water the opposite is true because of strong 
interactions between the polar solvent and the charges in the
zwitterion. Therefore, we might suspect that the zwitterionic
form is the predominant one in polar media, as is confirmed by
protonation/deprotonation calculations of the type carried out
in introductory chemistry courses.

Computational chemistry can be used to predict trends 
in electrochemical properties, such as reduction potentials
(Section 17.6). Several experimental and computational studies
of aromatic hydrocarbons indicate that decreasing the energy 
of the lowest unoccupied molecular orbital (LUMO) enhances 
the ability of the molecule to accept an electron into the LUMO,
with an attendant increase in the value of the molecule’s re-
duction potential. The effect is also observed in quinones and
flavins, which are co-factors involved in biological electron

Table 6.2 Comparison of methods for small H-containing
molecules

Expt HF limit MNDO PM3 CI* MP2 DFT

R(H-H)/pm 74.2 73.6 66.3 69.9 73.9 73.8 76.7

R(O-H)/pm 95.8 94.3 94.3 95.1 95.2 96.0 97.1
in H2O

Bond angle/° 104.5 106.4 106.8 107.7 104.9 103.5 105.1
in H2O

Dipole moment, 1.85 2.2 1.8 1.7 1.9 2.2 2.2
µ(H2O)/D†

* For dihydrogen, full CI. For water, CI with inclusion of singly and doubly excited
determinants.
† 1 D (debye) = 3.336 × 10−30 C m.

Table 6.3 Comparison of methods for small organic molecules

Expt PM3 MP2 DFT

R(C-C)/pm

propane 152.6 151.2 152.9 151.2

cyclobutane 154.8 154.2 155.0 153.7

R(C=C)/pm

propene 131.8 132.8 134.1 133.0

cyclobutene 133.2 134.9 135.2 134.1

#(C=C stretch)/cm−1

propene 1656 1862 1698 1680

cyclobutene 1570 1772 1598 1600
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transfer reactions. For example, stepwise substitution of the 
hydrogen atoms in p-benzoquinone by methyl groups (-CH3)
results in a systematic increase in the energy of the LUMO and 
a decrease in the reduction potential for formation of the semi-
quinone radical (1):

The reduction potentials of naturally occurring quinones are
also modified by the presence of different substituents, a strategy
that imparts specific functions to specific quinones. For ex-
ample, the substituents in coenzyme Q are largely responsible
for positioning its reduction potential so that the molecule can
function as an electron shuttle between specific proteins in the
respiratory chain (Impact I17.3).

The electronic structure calculations described in this chapter
provide insight into spectroscopic properties by correlating the
absorption wavelengths and the energy gap between the LUMO
and the HOMO in a series of molecules. For example, consider
the linear polyenes shown in Table 6.4, all of which absorb in the
UV region. The table shows that, as expected, the wavelength of
the lowest-energy electronic transition decreases as the HOMO–
LUMO energy difference increases. The smallest HOMO–LUMO
gap and greatest transition wavelength is found for octatetraene,
the longest polyene in the group. The wavelength of the trans-
ition increases with increasing number of conjugated double
bonds in linear polyenes and extrapolation of the trend suggests
that a sufficiently long linear polyene should absorb light in the
visible region. This is indeed the case for β-carotene (2), which
absorbs light with λ ≈ 450 nm. The ability of β-carotene to 
absorb visible light is part of the strategy employed by plants 
to harvest solar energy for use in photosynthesis (Impact I19.1).

Table 6.4 Electronic structure calculations and spectroscopic data

Polyene ∆∆E/eV* λ /nm

(C2H4) 18.1 163

14.5 217

12.7 252

11.8 304

* ∆E = E(HOMO) − E(LUMO).

Fig. 6.8 The rutile structure of TiO2 (blue spheres: Ti; red
spheres: O).

IMPACT ON NANOSCIENCE

I6.1 The structures of nanoparticles

Semiconductor oxides, such as TiO2 and ZnO, are a major area
of current research because they can act as photocatalysts, sub-
stances that accelerate chemical reactions upon absorption of
light. Reactions that can be enhanced by photocatalysts include
the splitting of water into H2 and O2, and the decomposition of
pollutants. Among the most popular photocatalytic materials is
TiO2 due to its low cost and catalytic efficiency. The method of
preparation of the bulk oxide has a strong influence on its cata-
lytic properties and experiments that attempt to control the
form of its crystal lattice have been undertaken widely. Similarly,
there is widespread interest in controlling the structure and
photocatalytic properties of TiO2 on the nanometre scale. Com-
putational studies on small clusters of TiO2 particles can pro-
vide insight into effects of size on photochemical properties 
of nanometre-sized materials, the nature of oxide–substrate 
interactions, and the growth of larger aggregates.

The most stable form of bulk TiO2 at atmospheric pressure
and room temperature is rutile (Fig. 6.8), in which each tita-
nium atom is surrounded by six oxygen atoms and each O is 
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surrounded by three Ti atoms. Each octahedron composed of
the six O atoms around the Ti centre shares two edges with other
octahedrons. Some experimental studies on TiO2 nanoparticles
suggest that the nanostructure is anatase, an elongated form 
of rutile in which the octahedrons share four edges. Other 
structural distortions appear to be possible as the particle size
decreases.

A recent computational study on small TinO2n clusters with 
n = 1–15 has identified the most stable structures for nanopar-
ticles with sizes less than 1 nm. To accomplish the challenging
computational task of finding the most probable cluster struc-
tures, density functional theory was used to evaluate the energy
as a function of geometry and specialized minimization algorithms
were used to find equilibrium structures. The calculations 
revealed compact equilibrium structures with coordination
numbers of the Ti atoms increasing with particle size. These
structures were found not to be related to anatase. For Ti11O22

up to Ti15O30, the largest nanoparticle studied, the structures
with lower energies consisted of a central octahedron surrounded
by square base pyramids, trigonal bipyramids, and tetrahedra
(Fig. 6.9). The DFT calculations revealed that structures with a
small number of square base pyramids are particularly stable.
The stable structures found for the various cluster sizes can 
be used in further computational work to study the effects of
nanostructure on the photochemical properties of TiO2.

IMPACT ON MEDICINE

I6.2 Molecular recognition and drug design

A drug is a small molecule or protein that binds to a specific 
receptor site of a target molecule, such as a larger protein or 
nucleic acid, and inhibits the progress of disease. To devise

efficient therapies, we need to know how to characterize and 
optimize both the three-dimensional structure of the drug and
the molecular interactions between the drug and its target.

The binding of a ligand, or guest, to a biopolymer, or host, 
is also governed by molecular interactions. Examples of biolo-
gical host–guest complexes include enzyme–substrate complexes, 
antigen–antibody complexes, and drug–receptor complexes. In
all these cases, a site on the guest contains functional groups that
can interact with complementary functional groups of the host.
Many specific intermolecular contacts must in general be made
in a biological host–guest complex and, as a result, a guest binds
only to hosts that are chemically similar. The strict rules govern-
ing molecular recognition of a guest by a host control every bio-
logical process, from metabolism to immunological response,
and provide important clues for the design of effective drugs for
the treatment of disease.

A full assessment of molecular recognition between a drug
and its target requires knowledge of the full spectrum of inter-
actions discussed in Chapter 8. But we can already anticipate
some of the factors that optimize the formation of host–guest
complexes. For example, a hydrogen bond donor group of the
guest must be positioned near a hydrogen bond acceptor group
of the host for tight binding to occur. We also expect that an
electron-poor region in a host should interact strongly with an
electron-rich region of a guest. Computational studies of the
types described in this chapter can identify regions of a molecule
that have high or low electron densities. Furthermore, graphical
representation of numerical results allows for direct visualiza-
tion of molecular properties, such as the distribution of electron
density, thereby enhancing our ability to predict the nature of
intermolecular contacts between host and guest.

Consider a protein host with the amino acid serine in a site
that binds guests. Electronic structure methods on the serine
molecule can provide electronic wavefunctions and electron
probability densities at any point in the molecule. From the elec-
tron probability densities and the charges of the atomic nuclei,
one can compute the electric potential (Fundamentals F.6) at
any point in the molecule (except at the nuclei themselves). The
resulting electric potential can be displayed as an electrostatic
potential surface (an ‘elpot surface’) in which net positive 
potential is shown in one colour and net negative potential is
shown in another, with intermediate gradations of colour. Such
an elpot surface for serine (NH2CH(CH2OH)COOH) is shown
in Fig. 6.10 where net positive potential is shown in blue and net
negative potential in red. The electron-rich regions of the amino
acid are susceptible to attack by an electropositive species and
the electron-poor regions to attack by an electronegative species.

There are two main strategies for the discovery of a drug. 
In structure-based design, new drugs are developed on the basis
of the known structure of the receptor site of a known target.
However, in many cases a number of so-called lead compounds
are known to have some biological activity but little information
is available about the target. To design a molecule with improved

Fig. 6.9 Stable geometries for TinO2n clusters, with n = 10, 13, and
15, determined from density functional theory calculations.
[From S. Hamad et al. J. Phys. Chem. B, 2005, 109, 15741.]
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pharmacological efficacy, quantitative structure–activity rela-
tionships (QSAR) are often established by correlating data on
activity of lead compounds with molecular properties, also
called molecular descriptors, which can be determined either 
experimentally or computationally.

In broad terms, the first stage of the QSAR method consists of
compiling molecular descriptors for a very large number of lead
compounds. Descriptors such as molar mass, molecular dimen-
sions and volume, and relative solubility in water and nonpolar
solvents are available from routine experimental procedures.
Quantum mechanical descriptors determined by calculations 
of the type described in this chapter include bond orders and
HOMO and LUMO energies.

In the second stage of the process, biological activity is ex-
pressed as a function of the molecular descriptors. An example
of a QSAR equation is:

Activity = c0 + c1d1 + c2d1
2 + c3d2 + c4d 2

2 + . . . (6.27)

where di is the value of the descriptor and ci is a coefficient cal-
culated by fitting the data by regression analysis. The quadratic
terms account for the fact that biological activity can have a
maximum or minimum value at a specific descriptor value. For
example, a molecule might not cross a biological membrane and
become available for binding to targets in the interior of the cell
if it is too hydrophilic, in which case it will not partition into the
hydrophobic layer of the cell membrane (see Impact I16.1 for
details of membrane structure), or too hydrophobic, for then 
it may bind too tightly to the membrane. It follows that the 

activity will peak at some intermediate value of a parameter that
measures the relative solubility of the drug in water and organic
solvents.

In the final stage of the QSAR process, the activity of a drug
candidate can be estimated from its molecular descriptors and
the QSAR equation either by interpolation or extrapolation of
the data. The predictions are more reliable when a large number
of lead compounds and molecular descriptors are used to gener-
ate the QSAR equation.

The traditional QSAR technique has been refined into 3D
QSAR, in which sophisticated computational methods are used
to gain further insight into the three-dimensional features of
drug candidates that lead to tight binding to the receptor site of
a target. The process begins by using a computer to superimpose
three-dimensional structural models of lead compounds and
looking for common features, such as similarities in shape, 
location of functional groups, and electrostatic potential plots.
The key assumption of the method is that common structural
features are indicative of molecular properties that enhance
binding of the drug to the receptor. The collection of super-
imposed molecules is then placed inside a three-dimensional grid
of points. An atomic probe, typically an sp3-hybridized carbon
atom, visits each grid point and two energies of interaction 
are calculated: Esteric, the steric energy reflecting interactions 
between the probe and electrons in uncharged regions of the
drug, and Eelec, the electrostatic energy arising from interactions
between the probe and a region of the molecule carrying a partial
charge. The measured equilibrium constant for binding of the

Fig. 6.10 An electrostatic potential surface for the amino acid
serine. Positive charge is shown in blue and negative charge in
red, with intermediate gradations of colour. The red regions 
of the molecule are electron-rich and the blue regions are
electron-poor.

Fig. 6.11 A 3D QSAR analysis of the binding of steroids,
molecules with the carbon skeleton shown, to human
corticosteroid-binding globulin (CBG). The ellipses indicate
areas in the protein’s binding site with positive or negative
electrostatic potentials and with little or much steric crowding. 
It follows from the calculations that addition of large
substituents near the left-hand side of the molecule (as it is
drawn on the page) leads to poor affinity of the drug to the
binding site. Also, substituents that lead to the accumulation of
negative electrostatic potential at either end of the drug are likely
to show enhanced affinity for the binding site. [Adapted from 
P. Krogsgaard-Larsen, T. Liljefors, U. Madsen (ed.), Textbook of
drug design and discovery, Taylor & Francis, London (2002).]
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drug to the target, Kbind, is then assumed to be related to the 
interaction energies at each point r by the 3D QSAR equation

(6.28)

where the c(r) are coefficients calculated by regression analysis,
with the coefficients cs and ce reflecting the relative importance
of steric and electrostatic interactions, respectively, at the grid
point r. Visualization of the regression analysis is facilitated by
colouring each grid point according to the magnitude of the
coefficients. Figure 6.11 shows results of a 3D QSAR analysis of

   

log { ( ) ( ) ( ) ( )}K c c E c Ebind s steric e elec= + +0 r r r r
rr

∑

the binding of steroids, molecules with the carbon skeleton shown,
to human corticosteroid-binding globulin (CBG). Indeed, we see
that the technique lives up to the promise of opening a window
into the chemical nature of the binding site even when its struc-
ture is not known.

The QSAR and 3D QSAR methods, though powerful, have
limited power: the predictions are only as good as the data used
in the correlations are both reliable and abundant. However, the
techniques have been used successfully to identify compounds
that deserve further synthetic elaboration, such as addition or
removal of functional groups, and testing.

Checklist of key ideas

1. A spinorbital is the product of a molecular orbital and a spin
function.

2. The Hartree–Fock (HF) method uses a single Slater
determinant, built from molecular orbitals that satisfy the
HF equations, to represent the ground-state electronic
wavefunction.

3. The Hartree–Fock equations involve the Fock operator,
which consists of the core hamiltonian and terms
representing the average Coulomb repulsion ( J) and average
correction due to spin correlation (K). The equations must
be solved self-consistently.

4. The Hartree–Fock method neglects electron correlation, the
tendency of electrons to avoid one another to minimize
repulsion.

5. The Roothaan equations are a set of simultaneous equations,
written in matrix form, that result from using a basis set of
functions to expand the molecular orbitals.

6. In a minimal basis set, one basis set function represents each
of the valence orbitals of the molecule.

7. Slater-type orbitals (STO) and Gaussian-type orbitals
(GTO) centred on each of the atomic nuclei are commonly
used as basis set functions; the product of two Gaussians on
different centres is a single Gaussian function located
between the centres.

8. In semiempirical methods, the two-electron integrals are 
set to zero or to empirical parameters; ab initio methods
attempt to evaluate the integrals numerically.

9. The Hückel method is a simple semiempirical method for
conjugated π systems.

10. In the complete neglect of differential overlap (CNDO)
approximation, two-electron integrals are set to zero unless
the two basis set functions for electron 1 are the same and
the two basis functions for electron 2 are the same.

11. Other semiempirical methods include INDO (intermediate
neglect of differential overlap), NDDO (neglect of diatomic
differential overlap), MINDO (modified intermediate

neglect of differential overlap), MNDO (modified neglect of
differential overlap), AM1, and PM3.

12. Virtual orbitals are molecular orbitals that are unoccupied
in the HF ground-state electronic wavefunction.

13. A singly excited determinant is formed by transferring an
electron from an occupied orbital to a virtual orbital, a
doubly excited determinant by transferring two electrons,
and so on. Each of these Slater determinants (including the
HF wavefunction) is a configuration state function (CSF).

14. Configuration interaction (CI) expresses the exact electronic
wavefunction as a linear combination of configuration state
functions.

15. Configuration interaction and Møller–Plesset perturbation
theory are two popular ab initio methods that accommodate
electron correlation.

16. Full CI uses molecular orbitals built from a finite basis set
and allows for all possible excited determinants.

17. Many-body perturbation theory is the application of
perturbation theory to a molecular system of interacting
electrons and nuclei.

18. Møller–Plesset perturbation theory (MPPT) uses the sum 
of the Fock operators from the HF method as the simple,
model hamiltonian @ (0).

19. According to Brillouin’s theorem, only doubly excited
determinants contribute to the second-order energy
correction.

20. In density functional theory (DFT), the electronic energy is
written as a functional of the electron probability density.

21. The exchange–correlation energy takes into account
nonclassical electron–electron effects.

22. The electron density is computed from the Kohn–Sham
orbitals, the solutions to the Kohn–Sham (KS) equations.
The latter equations are solved self-consistently.

23. The exchange–correlation potential is the functional
derivative of the exchange–correlation energy.
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24. One commonly used but approximate form for the
exchange–correlation energy is based on the model of an
electron gas, a hypothetical system in which electrons move
in a uniform distribution of positive charge.

25. Both the chemical accuracy and the computational cost of a
particular method should be considered when deciding

which electronic structure method to use in a given
application.

26. The Hartree–Fock limit refers to an infinite basis set or, in
practical terms, a finite basis set for which the energy and
equilibrium geometry of the molecule do not vary as the size
of the basis set is increased.

Discussion questions

6.1 Describe the physical significance of each of the terms that appears in
the Fock operator.

6.2 Explain why the Hartree–Fock formalism does not account for
electron correlation but the methods of configuration interaction and
many-body perturbation theory do.

6.3 Outline the computational steps used in the Hartree–Fock 
self-consistent field approach to electronic structure calculations.

6.4 Explain how the Roothaan equations arise in the Hartree–
Fock method. What additional approximations do they 
represent?

6.5 Discuss the role of basis set functions in electronic structure
calculations. What are some commonly used basis sets? Why are
polarization functions often included?

6.6 Explain why the use of Gaussian-type orbitals is generally preferred
over the use of Slater-type orbitals in basis sets.

6.7 Distinguish between semiempirical, ab initio, and density functional
theory methods of electronic structure determination.

6.8 Discuss how virtual orbitals are useful in CI and MPPT electronic
structure calculations.

6.9 Is DFT a semiempirical method? Justify your answer.

Exercises

6.1(a) Write down the electronic hamiltonian for the helium atom.

6.1(b) Write down the electronic hamiltonian for the lithium atom.

6.2(a) Write the expression for the potential energy contribution to the
electronic hamiltonian for LiH.

6.2(b) Write the expression for the potential energy contribution to the
electronic hamiltonian for BeH2.

6.3(a) Write down the electronic hamiltonian for HeH+.

6.3(b) Write down the electronic hamiltonian for LiH2+.

6.4(a) Write down the Slater determinant for the ground state of 
HeH+.

6.4(b) Write down the Slater determinant for the ground state of LiH2+.

6.5(a) Write down the Hartree–Fock equation for HeH+.

6.5(b) Write down the Hartree–Fock equation for LiH2+.

6.6(a) Set up the Roothaan equations for HeH+ and establish the
simultaneous equations corresponding to the Roothaan equations.
Adopt a basis set of two real normalized functions, one centred on H 
and one on He; denote the molecular orbitals ψa and ψb.

6.6(b) Set up the Roothaan equations for LiH2+ and establish the
simultaneous equations corresponding to the Roothaan equations.
Adopt a basis set of two real normalized functions, one centred on H 
and one on Li; denote the molecular orbitals ψa and ψb.

6.7(a) Construct the elements FAA and FAB for the species HeH+ and
express them in terms of the notation in eqn 6.14.

6.7(b) Construct the elements FAA and FAB for the species LiH2+ and
express them in terms of the notation in eqn 6.14.

6.8(a) Using the integral notation in eqn 6.14, identify all of the 
four-centre two-electron integrals that are equal to (AA |AB).

6.8(b) Using the integral notation in eqn 6.14, identify all of the 
four-centre two-electron integrals that are equal to (BB |BA).

6.9(a) How many basis functions are needed in an electronic structure
calculation on CH3Cl using a (a) minimal basis set, (b) split-valence
basis set, (c) double-zeta basis set?

6.9(a) How many basis functions are needed in an electronic structure
calculation on CH2Cl2 using a (a) minimal basis set, (b) split-valence
basis set, (c) double-zeta basis set?

6.10(a) What is the general mathematical form of a p-type Gaussian?

6.10(b) What is the general mathematical form of a d-type Gaussian?

6.11(a) A one-dimensional Gaussian (in x) has the form e−α x2
or xne−αx2

;
one-dimensional Gaussians in y and z have similar forms. Show that the
s-type Gaussian (eqn 6.17) can be written as a product of three one-
dimensional Gaussians.

6.11(b) A one-dimensional Gaussian (in x) has the form e−αx2
or xne−αx2

;
one-dimensional Gaussians in y and z have similar forms. Show that a 
p-type Gaussian (eqn 6.17) can be written as a product of three one-
dimensional Gaussians.

6.12(a) Show that the product of s-type Gaussians on He and H in HeH+

is a Gaussian at an intermediate position. Note that the Gaussians have
different exponents.

6.12(b) Show that the product of s-type Gaussians on Li and H in LiH2+

is a Gaussian at an intermediate position. Note that the Gaussians have
different exponents.
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6.13(a) How many basis functions are needed in an electronic structure
calculation on CH3Cl using a (a) 6-31G* basis set, (b) 6-311G** basis set,
(c) 6-311++G basis set?

6.13(b) How many basis functions are needed in an electronic structure
calculation on CH2Cl2 using a (a) 6-31G* basis set, (b) 6-311G** basis
set, (c) 6-311++G basis set?

6.14(a) Identify the quadratic equation for the coefficient of the basis
function centred on H in HeH+ starting from the Fock matrix and
making the Hückel approximations.

6.14(b) Identify the quadratic equation for the coefficient of the basis
function centred on H in LiH2+ starting from the Fock matrix and
making the Hückel approximations.

6.15(a) Identify the two-electron integrals that are set to zero in the
semiempirical method known as (a) CNDO, (b) INDO.

6.15(b) Identify the two-electron integrals that are set to zero in the
semiempirical method known as NDDO.

6.16(a) In a Hartree–Fock calculation on the silicon atom using 20 basis
set functions, how many of the molecular orbitals generated would be
unoccupied and could be used as virtual orbitals in a configuration
interaction calculation?

6.16(b) In a Hartree–Fock calculation on the sulfur atom using 20 basis
set functions, how many of the molecular orbitals generated would be
unoccupied and could be used as virtual orbitals in a configuration
interaction calculation?

6.17(a) Give an example of a singly excited determinant in a CI
calculation of H2.

6.17(b) Give an example of a doubly excited determinant in a CI
calculation of H2.

6.18(a) Using eqn 6.18, write down the expression for the ground-state
wavefunction in a CI calculation on HeH+ involving the ground-state
determinant and a singly excited determinant.

6.18(b) Using eqn 6.18, write down the expression for the ground-state
wavefunction in a CI calculation on LiH2+ involving the ground-state
determinant and a doubly excited determinant.

6.19(a) The second-order energy correction (eqn 6.21) in MPPT arises
from the doubly excited determinant (the M = 2 term). Derive an
expression for the integral that appears in the numerator of eqn 6.21 in
terms of the integrals (AB |CD) for HeH+.

6.19(b) The second-order energy correction (eqn 6.21) in MPPT arises
from the doubly excited determinant (the M = 2 term). Derive an
expression for the integral that appears in the numerator of eqn 6.21 in
terms of the integrals (AB |CD) for LiH2+.

6.20(a) Which of the following are functionals: (a) d(x3)/dx, (b) d(x3)/dx
evaluated at x = 1, (c) ∫x3dx, (d) ∫3

1x3dx?

6.20(b) Which of the following are functionals: (a) d(3x2)/dx, 
(b) d(3x3)/dx evaluated at x = 4, (c) ∫3x2dx, (d) ∫3

1
3x2dx?

6.21(a) Using eqn 6.23, write the expression for the electron density in
terms of the Kohn–Sham orbitals in a DFT calculation on LiH.

6.21(b) Using eqn 6.23, write the expression for the electron density in
terms of the Kohn–Sham orbitals in a DFT calculation on BeH2.

6.22(a) Write the two Kohn–Sham equations for the Kohn–Sham
orbitals in a DFT calculation on HeH+. Use the exchange–correlation
potential of eqn 6.26.

6.22(b) Write the two Kohn–Sham equations for the Kohn–Sham
orbitals in a DFT calculation on LiH2+. Use the exchange–correlation
potential of eqn 6.26.

6.23(a) Which of the following basis sets should give a result closer to the
Hartree–Fock limit in an electronic structure calculation on ethanol,
C2H5OH: (a) double-zeta, (b) split-valence, (c) triple zeta?

6.23(b) Which of the following basis sets should give a result closer to the
Hartree–Fock limit in an electronic structure calculation on methanol
CH3OH: (a) 4-31G, (b) 6-311+G**, (c) 6-31G*?

Problems*

Many of the following problems call on the use of commercially available
software. Use versions that are available with this text or the software
recommended by your instructor.

Numerical problems

6.1 Using appropriate electronic structure software, perform
Hartree–Fock self-consistent field calculations for the ground 
electronic states of H2 and F2 using (a) 6-31G* and (b) 6-311+G** 
basis sets. Determine ground-state energies and equilibrium 
geometries. Compare computed equilibrium bond lengths to
experimental values.

6.2 Using approprite electronic structure software and a basis set of your
choice or on the advice of your instructor, perform calculations for: 
(a) the ground electronic state of H2; (b) the ground electronic state of
F2; (c) the first electronic state of H2; (d) the first electronic state of F2.
Determine energies and equilibrium geometries and compare to
experimental values where possible.

6.3 Use the AM1 and PM3 semiempirical methods to compute the
equilibrium bond lengths and standard enthalpies of formation of (a)
ethanol, C2H5OH, (b) 1,4-dichlorobenzene, C6H4Cl2. Compare with
experimental values and suggest reasons for any discrepancies.

6.4 Molecular orbital calculations based on semiempirical (Section 6.5),
ab initio, and DFT methods describe the spectroscopic properties of
conjugated molecules better than simple Hückel theory (Section 6.4). 
(a) Using the computational method of your choice (semiempirical, ab
initio, or density functional methods), calculate the energy separation
between the HOMO and LUMO of ethene, butadiene, hexatriene, and
octatetraene. (b) Plot the HOMO–LUMO energy separations against the
experimental frequencies for π*←π ultraviolet absorptions for these
molecules (61 500, 46 080, 39 750, and 32 900 cm−1, respectively). Use
mathematical software to find the polynomial equation that best fits 
the data. (c) Use your polynomial fit from part (b) to estimate the
wavenumber and wavelength of the π*←π ultraviolet absorption of
decapentaene from the calculated HOMO–LUMO energy separation.
(d) Discuss why the calibration procedure of part (b) is necessary.

* Problems denoted with the symbol ‡ were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.
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6.5 Molecular electronic structure methods may be used to estimate 
the standard enthalpy of formation of molecules in the gas phase. 
(a) Using a semiempirical method of your choice, calculate the 
standard enthalpy of formation of ethene, butadiene, hexatriene, and
octatetraene in the gas phase. (b) Consult a database of thermochemical
data, and, for each molecule in part (a), calculate the difference between
the calculated and experimental values of the standard enthalpy of
formation. (c) A good thermochemical database will also report the
uncertainty in the experimental value of the standard enthalpy of
formation. Compare experimental uncertainties with the relative 
errors calculated in part (b) and discuss the reliability of your chosen
semiempirical method for the estimation of thermochemical properties
of linear polyenes.

6.6‡ Luo et al. (J. Chem. Phys. 98, 3564 (1993)) reported experimental
observation of He2, a species that had escaped detection for a long 
time. The observation required temperatures in the neighbourhood 
of 1 mK. Perform configuration interaction and MPPT electronic
structure calculations and compute the equilibrium bond length Re
of the dimer as well as the energy of the dimer at Re relative to the
separated He + He atomic limit. (High level, accurate computational
studies suggest that the well depth for He2 is about 0.0151 zJ at a 
distance Re of about 297 pm.)

6.7 An important quantity in nuclear magnetic resonance spectroscopy
(Chapter 12), which should be familiar from 13C-NMR spectra of
organic molecules, is the chemical shift; this experimentally determined
quantity is influenced by the details of the electronic structure near the
13C nucleus of interest. Consider the following series of molecules:
benzene, methylbenzene, trifluoromethylbenzene, benzonitrile, and
nitrobenzene in which the substituents para to the C atom of interest are
H, CH3, CF3, CN, and NO2, respectively. (a) Using the computational
method of your choice, calculate the net charge at the C atom para
to these substituents in the series of organic molecules given above. 
(b) It is found empirically that the 13C chemical shift of the para C atom
increases in the order: methylbenzene, benzene, trifluoromethylbenzene,
benzonitrile, nitrobenzene. Is there a correlation between the behaviour
of the 13C chemical shift and the computed net charge on the 13C atom?
(This problem is revisited in Problem 12.17.)

Theoretical problems

6.8 Show that the Slater determinant in eqn 6.5a is normalized assuming
that the spinorbitals from which it is constructed are orthogonal and
normalized.

6.9 In a configuration interaction calculation on the ground 2S state of
Li, which of the following Slater determinants can contribute to the
ground-state wavefunction?

(a) |ψ1s
αψ1s

βψ2s
α | (b) |ψ1s

αψ1s
βψ2s

β | (c) |ψ1s
αψ1s

βψ 2p
α |

(d) |ψ1s
αψ2p

αψ2p
β | (e) |ψ1s

αψ3d
αψ3d

β | (f ) |ψ1s
αψ2s

αψ3s
α |

6.10 In a configuration interaction calculation on the excited 3∑u
+

electronic state of H2, which of the following Slater determinants can
contribute to the excited-state wavefunction?

(a) |1σg
α1σu

α | (b) |1σg
α1πu

α | (c) |1σu
α1πg

β |
(d) |1σg

β2σu
β | (e) |1πu

α1πg
α | (f) |1πu

β2πu
β |

6.11 Use MPPT to obtain an expression for the ground-state
wavefunction corrected to first order in the perturbation.

6.12 It is often necessary during the course of an electronic structure
calculation to take derivatives of the basis functions with respect to
nuclear coordinates. Show that the derivative of an s-type Gaussian with
respect to x yields a p-type Gaussian and that the derivative of a p-type

Gaussian (i = 1, j = k = 0 in eqn 6.17) yields a sum of s- and d-type
Gaussians.

6.13 (a) In a continuation of Exercise 6.6a for HeH+, proceed to
determine the energies of the two molecular orbitals as well as the
relation between the two coefficients for ψa and the relation between 
the two coefficients for ψb. (b) Repeat for LiH2+ (in a continuation of
Exercise 6.6b).

6.14 (a) Continuing the Hartree–Fock calculation on HeH+ in 
Problem 6.13(a), give the expressions for all four of the elements of the
Fock matrix in terms of four-centre, two-electron integrals; the latter are
defined in eqn 6.14. (b) Repeat for LiH2+ (in a continuation of Problem
6.13(b)).

6.15 (a) In a continuation of Problem 6.14(a) for HeH+, use Hückel
molecular orbital theory to express the energies of the molecular orbitals
in terms of α and β. (b) Repeat for LiH2+ (in a continuation of Problem
6.14(b)).

6.16 (a) Using the expressions for the four elements of the Fock matrix
for HeH+ determined in Problem 6.14(a), show how these expressions
simplify if the CNDO semiempirical method is used. (b) Repeat for
LiH2+, beginning with the expressions determined in Problem 6.14(b).

6.17 Consider a four-centre integral in an electronic structure
calculation on NH3 involving s-type Gaussian functions centred on each
atomic nucleus. Show that the four-centre, two-electron integral reduces
to an integral over two different centres.

6.18 (a) Show why configuration interaction gives an improved 
ground-state wavefunction for HeH+ compared to the Hartree–Fock
ground-state wavefunction. Use a minimal basis set and ignore 
overlap. Follow along the lines of the argument presented in the first
illustration in Section 6.6 but recognize the complication introduced 
by the fact that HeH+ does not have inversion symmetry. (b) Repeat 
for LiH2+.

6.19 In the second illustration of Section 6.6, the secular equation for a
CI calculation on molecular hydrogen using the ground-state Slater
determinant and the doubly excited determinant was presented as well as
the expression for one of the hamiltonian matrix elements. Develop
similar expressions for the remaining hamiltonian matrix elements.

6.20 Show that in MPPT first-order energy corrections do not
contribute to the correlation energy.

6.21 Prove Brillouin’s theorem, which states that the hamiltonian matrix
elements between the ground-state Hartree–Fock Slater determinant and
singly excited determinants are zero.

6.22 Derive an expression for the second-order estimate of the
correlation energy for H2 if, in a CI calculation using a minimal basis set,
the overlap between the two basis set functions is not ignored but set
equal to a constant S.

6.23 Find the DFT exchange–correlation potential if the
exchange–correlation energy is given by ∫Cρ5/3dr.

Applications: to biology

6.24 Molecular orbital calculations may be used to predict trends in 
the standard potentials of conjugated molecules, such as the quinones
and flavins, that are involved in biological electron transfer reactions
(Section 20.8). It is commonly assumed that decreasing the energy of the
LUMO enhances the ability of a molecule to accept an electron into the
LUMO, with an accompanying increase in the value of the molecule’s
standard potential. Furthermore, a number of studies indicate that there
is a linear correlation between the LUMO energy and the reduction

QMA_C06.qxd   8/12/08  9:11  Page 194



potential of aromatic hydrocarbons. (a) The standard potentials at pH 7
for the one-electron reduction of methyl-substituted 1,4-benzoquinones
(3) to their respective semiquinone radical anions are:

R2 R3 R5 R6 E 7/V

H H H H 0.078

CH3 H H H 0.023

CH3 H CH3 H −0.067

CH3 CH3 CH3 H −0.165

CH3 CH3 CH3 CH3 −0.260

Using the computational method of your choice (semiempirical, ab
initio, or density functional theory methods), calculate ELUMO, the 
energy of the LUMO of each substituted 1,4-benzoquinone, and plot
ELUMO against E 7. Do your calculations support a linear relation between
ELUMO and E 7? (b) The 1,4-benzoquinone for which R2 = R3 = CH3 and
R5 = R6 = OCH3 is a suitable model of ubiquinone, a component of the
respiratory electron transport chain (Impact I17.3). Determine ELUMO of
this quinone and then use your results from part (a) to estimate its
standard potential. (c) The 1,4-benzoquinone for which R2 = R3 = R5 =
CH3 and R6 = H is a suitable model of plastoquinone, a component of

the photosynthetic electron transport chain (Impact I19.1). Determine
ELUMO of this quinone and then use your results from part (a) to estimate
its standard potential. Is plastoquinone expected to be a better or worse
oxidizing agent than ubiquinone? (d) Based on your predictions and on
basic concepts of biological electron transport (Section 20.8), suggest a
reason why ubiquinone is used in respiration and plastoquinone is used
in photosynthesis.

6.25 This problem gives a simple example of a quantitative
structure–activity relation (QSAR), Impact I6.2, showing how to 
predict the affinity of non-polar groups for hydrophobic sites in the
interior of proteins. (a) Consider a family of hydrocarbons R-H. The
hydrophobicity constants, π, for R = CH3, CH2CH3, (CH2)2CH3,
(CH2)3CH3, and (CH2)4CH3 are, respectively, 0.5, 1.0, 1.5, 2.0, and 2.5.
Use these data to predict the π value for (CH2)6CH3. (b) The equilibrium
constants KI for the dissociation of inhibitors (4) from the enzyme
chymotrypsin were measured for different substituents R:

R CH3CO CN NO2 CH3 Cl

π −0.20 −0.025 0.33 0.5 0.9

log KI −1.73 −1.90 −2.43 −2.55 −3.40

Plot log KI against π. Does the plot suggest a linear relationship? If so,
what are the slope and intercept to the log KI axis of the line that best fits
the data? (c) Predict the value of KI for the case R = H.
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