
Some knowledge of algebra and trigonometry is essential
for a full understanding of this book. In addition, a lim
ited ability to deal with complex numbers and derivatives
(a part of calculus) is helpful, although not entirely essen
tial. This appendix is meant as the briefest of summaries
of complex numbers and differentiation, preceded by a col
lection of useful formulas from tligonometry, exponentials,
and logarithms. It is not meant as a textbook substitute.
For a highly readable self-help book on calculus, we rec
ommend Quick Calculus, by D. Kleppner and N. Ramsey,
Wiley, 2nd ed., 1985.

Here is a collection of useful formulas:

-b±Vb2 -4ae
x=------

2a

is the solution of the quadratic equation

ax2 +bx+e = O.

sin(x±y) = sinxcosy±cosxsiny,

cos(x±y) = cosxcoSY=F sinxsiny,

sin2x = 2sinxcosx,

1
cosxcos y = "2 [cos(x+y) + cos(x-y)] ,

1
cosxsiny = [sin(x+y) - sin(x-y)] ,

2

sinxsiny = ~ [cos(x-y) - cos(x+y) ]

A complex number is an object of the form

N=a+ib,

where a and b are real numbers and i is the square root of
- 1; a is called the real part, and b is called the imaginary
part. 1 Boldface letters or squiggly underlines are some
times used to denote complex numbers. At other times
you're just supposed to know!

Complex numbers can be added, subtracted, multiplied,
etc., just as real numbers:

(a+ib) + (e+id) = (a+e) +i(b+d),

(a+ib) - (c+id) = (a-c) +i(b-d),

(a+ ib) (e + id) = (ac bd) + i (be +ad) ,

a+ib (a+ib)(e-id) ae+bd be-ad.--- ----+---z
c + id - (e + id) (e - id) - c2 +d2 e2 +d2 .

1 Electrical engineers depart from the universal convention of i=R,
using instead the symbol j in order to avoid duplicating the use of the

symbol i (which designates small-signal cunent). We follow the EEs in

this book, but not in this Math appendix. Were we to do so, we would

likely be disowned by our math colleagues.
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All these operations are natural, in the sense that you just
treat i as something that multiplies the imaginary part, and
go ahead with ordinary arithmetic. Note that i2 == -1 (used
in the multiplication example) and that division is simpli
fied by multiplying top and bottom by the complex conju
gate, the number you get by changing the sign of the imag
inary part. The complex conjugate is sometimes indicated
with an asterisk. If

N == a+ib,

then

N* == a-ib.

The magnitude (or modulus) of a complex number is a real
number with no imaginary part:

INI == la+ibl == v(a+ib)(a-ib) == Va2 +b2 ,

i.e.,

INI == VNN*,

simply obtained by multiplying by the complex conjugate
and taking the square root. The magnitude of the product
(or quotient) of two complex numbers is simply the product
(or quotient) of their magnitudes.

The real (or imaginary) part of a complex number is
sometimes written as

real part of N == !%e (N) ,
imaginary part of N == yrm(N).

You get them by writing out the number in the form a+ ib,
then taking either a or b. This may involve some multipli
cation or division, since the complex number may be a real
mess.

imaginary

2.5i

(2.8+1.2i)

(1- i)

Figure A.1. Complex numbers in the "complex plane."

imaginary
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Figure A.2. Complex numbers, as magnitude and angle.

Complex numbers are sometimes represented on the
complex plane. It looks just like an ordinary x,y graph, ex
cept that a complex number is represented by plotting its
real part as x and its imaginary part as y, as shown in Fig
ure A.1. In keeping with this analogy, you sometimes see
complex numbers written just like x,y coordinates:

a+ib B (a,b).

Just as with ordinary x,y pairs, complex numbers can be
represented in polar coordinates; that's known as "magni
tude, angle" representation. For example, the number a + ib
can also be written as (Figure A.2)

a+ ib == rLe,

where2 r == y'a2 +b2 and e == tan-1 (b / a). This is usually
written in a different way, using the astonishing fact that

eie == cos e+ isin e.

(You can derive the preceding result, known as Euler's3
formula, by expanding the exponential in a Taylor series.)
Thus we have the following equivalents:

N == a +ib == re ie
,

r == INI == VNN* == Va2 +b2 ,

e == tan-1 (b/ a),

i.e., the modulus r and angle e are simply the polar coordi
nates of the point that represents the number in the complex
plane. Polar form is handy when complex numbers have to
be multiplied; you just multiply their magnitudes and add
their angles (or, to divide, you divide their magnitudes and
subtract their angles):

(r1 eie1 ) (r2 eie2 ) == r1r2ei(el+e2).

2 Caution: the formula for e returns values only between -n12 and

+n12; the signs of both a and b, and not merely their quotient, are

required for a correct value of e in all four quadrants.
3 Leonhard Euler, pronounced like "oiler."
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!1le(reie ) = rcos B,

Ym(reie ) = rsinB.

can be used to derive the sum and difference
of trigonometric functions, so you never have to remember
those pesky formulas. Just work out ei(x±y).)

If you have a number multiplying a complex
exponential, just do the necessary multiplications. If

reie = rcos B+irsinB,

to convert from
Euler's formula:

to rectangular form, use y

4

3

2

dy = +2 at x = 1
dx

32

A single-valued function: f(x) = x2 .

-1
--I------::::!Ill-t=-~---I-----l-------l--x

d
-axl1 = anxl1

-
1

dx '

d .
dx sIn ax = acosax,

d
dx ax = a

d
-a=O
dx

Send delta x to zero, and I think you'll see
That what the limit gives us our work all
Is what you call dy / dx. ..
It's dy/dx.

Derivative Song, sung to the tune of There'll
Be Some Changes W. Benton

Differentiation is a art, and deriva-
tives of many common functions are tabulated in stan
dard tables and automatically calculated in programs like
lVl,ltn(~m;atl(;a'=. Here are some rules (u and V are -:::t-rh.1"t-r·:::t-r",T

functions and a a r-r. ....'0 .... n'-r\ .... \

We start with the concept of afunction f(x), a formula
that gives a value y == f(x) for each x. The function f(x)
should be single valued it should give a single value
of y for each x. You can think of y == f(x) as a graph, as
in Figure A.3. The derivative of y with respect to x, written
dy / dx ("dee y dee x"), is the slope of the graph of y versus
x. draw a tangent to the curve at some its
is dy / dx at that point; the derivative is itself a function,
since it has a value at each point. In A.3 the slope
at the 1) to be 2, whereas the at
the how to the

In mathematical terms, the derivative is the .JL.JL.....ULA."... JL ...J-,

value of the ratio of the in y (~y) to the
in x (~), as~ goes to zero. To a song once sung in
the hallowed halls of Harvard (by Tom Lehrer and Lewis

N = a+ib,

= (a + ib) (cos e+ i sin B) ,

= (acos B - bsin

+i (b cos B+a sin B).

When with circuits and signals, the angular argu
ment eoften takes the form of an evolving wave: e== rot ==
2rr:ft; thus, for example, V(t) == &i'e(Voeia>t) == Vocos rot,
etc.

You take a function and you call it y
Take any that you care to
Make a little and call it delta x
The in y is what you find
nex'
And then you take the qU,'Jl~H~rlJt, and now,

d .
dx cos ax = -a sIn ax,

d
-logex = l/x.
dx
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A.3.2 Some rules for combining derivatives

Here u(x) and v (x) represent generic functions of x:

d d
dxau(x) ==a dXU(x) ,

d du dv
dx (u+v) == dx + dx'

d 1 du
-log u ==-
dx e u dx

d dudv
dx {u[v(x)]} == dv dx·

The last one is very useful and is called the chain rule.

A.3.3 Some examples of differentiation

d
_x2 == 2x
dx '

d
- xex == xex + eX (product rule) ,
dx

d -x2 -x2 ( )- e == - 2xe chain rule ,
dx

~aX == ~ (trylogea) == aX log a (chain rule).
dx dx e

Once you have differentiated a function, you often want to
evaluate the value of the derivative at some point. Other
times you may want to find a minimum or maximum of the
function; that's the same thing as having a zero derivative,
so you can just set the derivative equal to zero and solve for
x. For example, you can easily determine that the slope of
the function plotted in Figure A.3 equals 2 at x=l, and that
its minimum occurs at x=O (where its slope is zero).




