4. Ricerca di sequenze in banche dati e allineamento multiplo

• Collegatevi al sito www.ncbi.nlm.nih.gov/BLAST. Apparirà una pagina nella quale le versioni di BLAST disponibili sono organizzate in base al tipo di ricerca che si desidera effettuare. Selezionate *protein-protein BLAST* (BLASTP), come mostrato nella seguente figura (freccia):

Basi	ic E	SLA	ST

Choose a BLAST program to run.

nucleot	ide blast	Search a nucleotide database using a nucleotide query <i>Algorithms:</i> blastn, megablast, discontiguous megablast
prot	ein blast	Search protein database using a protein query Algorithms: blastp, psi-blast, phi-blast
	<u>blastx</u>	Search protein database using a translated nucleotide query
/	<u>tblastn</u>	Search translated nucleotide database using a protein query
•	<u>tblastx</u>	Search translated nucleotide database using a translated nucleotide query

Aprite ora una nuova finestra del browser e collegatevi al sito dell'NCBI (www.ncbi.nlm.nih.gov) ed entrate nella sezione relativa alla banca dati di proteine. Cercate la proteina con codice CAD97936. Come si vedrà, questa è una proteina ipotetica di *Homo sapiens*. Incollate la sequenza in formato FASTA nel campo *Search* della pagina di BLAST (la prima riga di annotazione non va inserita. Alternativamente, si può inserire nel campo direttamente il codice GenInfo o il codice di accessione della proteina):

	Basic Local Alignment Search Tool
Home Recen	Results Saved Strategies Help
NCBI/ BLAST/ blastp	uite
blastn blastp blastx	tblastn tblastx
Enter Query S	BLASTP programs search protein databases using a protein query. more
Enter accession r	umber, gi, or FASTA sequence 😡 <u>Clear</u> Query subrange 😡
ILEEDAEVYELRSRGKEK FALRSIKIPVKKFSSLTE VKCTDNKRENLNEVVSAL ILAKVDVSHHSTVDSSHL	RRSTSRDRLDDIIVLTKDIQEGDTLNAIALQYCCTVADIKRVNNLISDQDF LCPPKGRQTSRHSSVQYSSEQQEILPANDSLAYSDSAGSFLKEVDRDIEQI AQQMRFEPDWKNTQRDPYYGADMGIGWWTAVVIMLIVGIITPVFYLLYYE ISKITPPSQQKEMENGIVPTKGIHFSQQDDHKLYSQDSQSPAAQQET
Or, upload file Job Title	Sfoglia 9
Align two or m	Enter a descriptive title for your BLAST search 😡
Choose Searc	n Set
Database	Non-redundant protein sequences (nr)

In fondo alla pagina c'è un collegamento (*Algorithm parameters*) attraverso il quale si apre la seguente interfaccia con i parametri utilizzati da BLAST che possono essere modificati all'occorrenza dall'utente (per l'interpretazione dei parametri si veda il Capitolo 5).

General Parame	eters			
Max target sequences	100 ▼ Select the maximum number of aligned sequences to display ⊚			
Short queries	Automatically adjust parameters for short input sequences @			
Expect threshold	10 😡			
Word size 3 • @				
Scoring Parame	eters			
Matrix	BLOSUM62 V			
Gap Costs	Existence: 11 Extension: 1 🔹 🎯			
Compositional adjustments	Conditional compositional score matrix adjustment 🔹 😡			
Filters and Mas	king			
Filter	Low complexity regions @			
Mask	Mask for lookup table only @			
	I Mask lower case letters 😡			
BLAST	Search database Non-redundant protein sequences (nr) using Blastp (protein-protein BLAST)			

Lanciate il programma (cliccando sul pulsante *BLAST*). Dopo un breve lasso di tempo appariranno i risultati della ricerca. Il primo risultato che viene riportato riguarda la ricerca di domini conservati lungo la sequenza sonda (Figura 1) utilizzando la banca dati Conserved Domains (CDD).

Job Title: Protein Sequence (345 letters)							
	Putative conserved domains have been detected, click on the image below for detailed results.						
Queru sea.	50 100 150 200 200 345 345 300 345						
4001 3 00 11	putative peptidoglycan binding site 🚵 🚵						
Specific hits	LysM						
Superfamilies	LysM superfamily						

Figura 1 Risultato della ricerca nella banca dati CDD. La figura indica la presenza lungo la sequenza di un dominio noto nella banca dati come "LysM". L'icona del dominio può essere attivata attraverso mouse e accedere in questo modo a ulteriori informazioni sul dominio.

La ricerca utilizza RPS-BLAST (Capitolo 8). Il risultato che appare successivamente riporta l'elenco delle sequenze significativamente simili alla sequenza sonda. L'interpretazione della schermata può essere effettuata seguendo la descrizione riportata nel Capitolo 5. L'elenco delle proteine (Figura 2) contiene i collegamenti alle informazioni relativa a

ciascuna proteina contenute nella banca dati e all'allineamento con la sequenza sonda (Figura 3).

Sequences producing significant alignments:	Score (Bits)	E Value
emb CAD97936.1 hypothetical protein [Homo sapiens]	719	0.0 G
ref XP 517659.2] PREDICTED: hypothetical protein [Pan troglod	711	0.0 UG
ref XP 001086208.1 PREDICTED: similar to LysM, putative pept	685	0.0 UG
ref NP 938014.1 LysM, putative peptidoglycan-binding, domain	637	0.0 UG
emb CAL38656.1 hypothetical protein [synthetic construct] >d	635	3e-180 G
gb AAI46688.1 LysM, putative peptidoglycan-binding, domain c	633	7e-180 G
emb CAL38090.1 hypothetical protein [synthetic construct]	633	9e-180 G
ref XP 869935.2 PREDICTED: similal to LysM and putative pept	574	6e-162 UG
ref XP 546030.2 PREDICTED: similar to LysM, putative peptido gb EFB19702.1 hypothetical protein PANDA_001476 [Ailuropoda	572 562	3e-161 UG 2e-158
ref XP 001503795.2 PREDICTED: similar to LysM and putative p	562	2e-158 UG
<pre>ref NP 084533.1 LysM, putative peptidoglycan-binding, domain</pre>	489	1e-136 UG
ref NP 001009698.1 LysM, putative peptidoglycan-binding, dom	489	2e-136 UG
ref XP 001366932.1 PREDICTED: hypothetical protein [Monodelp	471	5e-131 UG
ref XP 001510165.1 PREDICTED: hypothetical protein [Ornithor	423	1e-116 UG
\uparrow	1	
A	B	C

Figura 2 Parte della lista di sequenze risultate significativamente simili a quella sonda. Attivando i collegamenti dei codici (freccia A) si accede alla scheda della sequenza nella banca dati di proteine. Il collegamento del punteggio (freccia B) rimanda invece all'allineamento fatto da BLAST tra la sequenza sonda e la sequenza bersaglio. I collegamenti indicati dalla freccia C in corrispondenza di ciascuna sequenza rimandano ad altre banche dati contenenti informazioni sulla sequenza del gene (Entrez Gene) o del trascritto (UNIGENE)

> ref Length	XP 00 =381	1510165.1 UG PREDICTED: hypothetical protein [Ornithorhynch	nus anatinus]				
GENE ID: 100079181 LOC100079181 hypothetical protein LOC100079181 [Ornithorhynchus anatinus]							
Score Ident:	= 42 ities	23 bits (1088), Expect = 1e-116, Method: Compositional matrix = 215/328 (65%), Positives = 252/328 (76%), Gaps = 6/328 (1%)	adjust.				
Query	18	GGGPFGHLLAECSLLTGTDFNIMAGRHQNRSFPLPGVQSSGQVHAFGNCSDSDILEED	75				
Sbjct	55	GG HL A+ +F +MAGK QNRSF VQ + ++ FGN +D DI EED GGTKKTHLFAQAFWEEFKMMAGRSQNRSFHGAAVQPVVNSHMYPFGNNTDPDISEED	111				
Query	76	AEVYELRSRGKEKVRRSTSRDRLDDIIVLTKDIQEGDTLNAIALQYCCTVADIKRVNNLI	135				
Sbjct	112	GEVYELRPRGREKNRRSSSRDRCDDIVLLTKDIQEGDTLIAIALQYCCSVADIKRVNNLI	171				
Query	136	SDQDFFALRSIKIPVKKFSSLTETLCPPKGRQTSRHSSVQYSSEQQEILPANDSLAYSDS	195				
Sbjct	172	SDQDFFALRSTKIPVKKFS DIEI PKGK +++ + Q+ PATD + +++ SDQDFFALRSVKIPVKKFSVLTETHYSPKGRPPLHPAAAADAPGPQDAAPASDPSSPNET	231				
Query	196	AGSFLKEVDRDIEQIVKCTDNKRENLNEVVSALTAQQMRFEPDNKNTQRKDPYYGADWGI	255				
Sbjct	232	AG FLKEVIKDIEQIVECID KENLNEVVSAL QQF FEFF KF FKDFIGADWGI AGGFLKEVDRDIEQIVRCTDTKKENLNEVVSALATQQVCFEPEGKSVRRKDPYYGADWGI	291				
Query	256	GWWTAVVIMLIVGIITPVFYLLYYEILAKVDVSHHSTVDSSHLHSKITPPSQQREMENGI	315				
Sbjct	292	GWWTAVVIELIUGIIIPVFILLIIETL XVDVSHHSIVTSS HS TPPS QKET NG GWWTAVVIMLIVGIITPVFYLLYYEVLVKVDVSHHSTVESSQSHSGVTPPSPQREVGNGP	351				

Figura 3 Parte dei risultati contenenti gli allineamenti tra la sequenza sonda (Query) e la sequenza della banca dati (Sbjct). La riga centrale marcata dalla freccia indica le posizioni in cui i residui delle due sono identici (viene visualizzato il residuo) o affini (in questo caso viene riportato un «+»). Le posizioni non conservate rimangono vuote.

 Tornate alla pagina di BLASTP, ma questa volta selezionate PSI-BLAST nel campo *Program selection* e attivate la ricerca cliccando sul solito pulsante BLAST. Dopo un breve lasso di tempo apparirà il risultato che si interpreta in modo del tutto simile a quanto visto per BLAST nel punto precedente. La differenza principale risiede nel fatto che adesso alcune sequenze sono etichettate con un bollino giallo contente la parola *new*. Le sequenze che mostrano un *E-value* superiore alla soglia stabilita o che sono oltre il numero massimo prefissato (nell'esempio 500) nei parametri del programma (e sotto il controllo dell'utente) invece non sono etichettate, come mostra la seguente figura:

NEW	1	ref XP 002068851.1 GK17804 [Drosophila willistoni] >gb EDW79	49.7	6e-04	G
NEW	1	emb CAN69383.1 hypothetical protein [Vitis vinifera]	49.3	6e-04	
NEW	1	ref [XP 001777655.1] predicted protein [Physcomitrella patens	48.9	8e-04	UG
NEW	1	ref[NP 001150809.1] lysM domain containing protein [Zea mays]	48.1	0.002	UG
NEW	1	ref NP 001050989.11 Os03g0699600 [Oryza sativa (japonica cult	47.8	0.002	UG
NEW	J	ref NP 001145842.11 hypothetical protein LOC100279352 [Zea ma	47.4	0.003	UG
NEW	1	ref XP 002466615.1 hypothetical protein SORBIDRAFT_01g011060	47.4	0.003	UG
NEW	1	gb[ACG27742.1] lysM domain containing protein [Zea mays]	47.4	0.003	
NEW	1	ref XP 001841801.1 conserved hypothetical protein [Culex qui	47.0	0.003	UG
NEW	1	ref [XP 001751684.1] predicted protein [Physcomitrella patens	47.0	0.003	UG
NEW	J	ref XP 001751222.1 predicted protein [Physcomitrella patens	46.6	0.004	UG
NEW	1	ref NP 197704.21 peptidoglycan-binding LysM domain-containing	46.2	0.005	UG

Run PSI-Blast iteration 2 with max 500

 Go +

Sequences with E-value WORSE than threshold

<pre>ref XP 002317729.1 predicted protein [Populus trichocarpa] ></pre>	46.2	0.005 UG
gb ABK95705.1 unknown [Populus trichocarpa]	46.2	0.006
gb EDL07199.1 LysM, putative peptidoglycan-binding, domain c	46.2	0.006 G
gb EFA76170.1 hypothetical protein PPL_10387 [Polysphondyliu	45.8	0.007
gb ABF93589.1 LysM domain containing protein, expressed [Ory	45.4	0.008
gb EDL07198.1 LysM, putative peptidoglycan-binding, domain c	45.4	0.009 G
<pre>ref NP 001064897.1 Os10g0485500 [Oryza sativa (japonica cult</pre>	45.4	0.010 UG
gb AAN61475.1 Hypothetical protein [Oryza sativa Japonica Gr	45.4	0.010
gb EAZ16474.1 hypothetical protein OsJ_31944 [Oryza sativa J	45.1	0.011
<pre>ref XP 002284540.1 PREDICTED: hypothetical protein [Vitis vi</pre>	45.1	0.011 UG
<pre>ref NP 491415.1 hypothetical protein B0041.3 [Caenorhabditis</pre>	45.1	0.012 UG
emb CBI36800.1 unnamed protein product [Vitis vinifera]	45.1	0.012

Le prime verranno utilizzate per costruire la PSSM per la seconda iterazione di ricerca che si attiva con il pulsante *Go* (frecce nella figura precedente). La lista risultante da questa ricerca contiene alcune sequenze marcate con un bollino verde (che sono le stesse trovate nella prima ricerca e sono state utilizzate per la PSSM) e altre con un bollino giallo (si veda la figura successiva). Queste ultime sono sequenze "nuove", sequenze cioè che nella prima iterazione ottenevano un *E-value* superiore alla soglia di significatività e ora invece risultano al di sotto. Tutte le sequenze riportate al di sotto della soglia ma comprese nel numero massimo prestabilito saranno utilizzate per calcolare la nuova PSSM dell'iterazione successiva.

NEW	J	chippw00442 11 x0024027 icoform CDD h [Dattue permaricual	95 0	117	
		<u>gb[EbM06443.1]</u> rCG24527, ISOIOIm CRA_b [Rattus horvegicus]	95.0	16-17	
		ref XP 001777655.1 predicted protein [Physcomitrella patens	93.8	2e-17	00
NEW	5	gb EDM08444.1 rCG24927, isoform CRA_c [Rattus norvegicus]	93.4	3e-17	_
NEW	1	gb EDL07199.1 LysM, putative peptidoglycan-binding, domain c	93.4	3e-17	G
	I	<pre>ref XP 002068851.1 GK17804 [Drosophila willistoni] >gb EDW79</pre>	92.6	5e-17	G
NEW	1	gb EDL07198.1 LysM, putative peptidoglycan-binding, domain c	91.5	1e-16	G
	I	emb CAN69383.1 hypothetical protein [Vitis vinifera]	91.1	2e-16	
	0 1	emb CBI35277.1 unnamed protein product [Vitis vinifera]	90.3	3e-16	
NE₩	1	gb ACJ84184.1 unknown [Medicago truncatula]	90.3	3e-16	
NE₩	1	gb ACU21432.1 unknown [Glycine max]	88.8	8e-16	
NE₩	1	ref XP 857759.1 PREDICTED: hypothetical protein XP 852666 is	86.5	4e-15	UG
	I	ref NP 001122476.1 hypothetical protein F43G9.2 [Caenorhabdi	85.7	7e-15	G
	I	ref XP 001751684.1 predicted protein [Physcomitrella patens	84.9	1e-14	UG
	I	ref XP 002310652.1 predicted protein [Populus trichocarpa] >	84.2	2e-14	UG
	9 1	ref XP 002267776.1 PREDICTED: hypothetical protein [Vitis vi	83.8	3e-14	UG
NEW	1	ref XP 001743317.1 hypothetical protein [Monosiga brevicolli	83.8	3e-14	G
NEW	1	ref XP 002512385.1 conserved hypothetical protein [Ricinus c	83.4	4e-14	G
NE₩	1	emb CBI36800.1 unnamed protein product [Vitis vinifera]	82.6	5e-14	
NEW	1	ref XP 002284540.1 PREDICTED: hypothetical protein [Vitis vi	82.6	5e-14	UG
	I	ref XP 002307170.1 predicted protein [Populus trichocarpa] >	82.6	6e-14	UG
NEW	1	ref XP 002319011.1 f-box family protein [Populus trichocarpa	82.6	6e-14	UG
	I	ref XP 002520920.11 conserved hypothetical protein [Ricinus c	82.2	7e-14	G

• Recuperate dalla banca dati NCBI le seguenti sequenze di regolatori trascrizionali in formato FASTA, i cui codici sono:

YP_521353.1, YP_864391.1, YP_286398.1, NP_249218.1 YP_316351.1, YP_284886.1, ZP_00942609.1

Collegatevi al sito www.ebi.ac.uk/Tools/clustalw2/ e incollare le 7 sequenze in formato FASTA (compresa la prima linea di annotazione che inizia con ">") nell'apposito campo:

Eseguite il programma cliccando su *Run*. In poco tempo comparirà la seguente pagina dei risultati:

ClustalW2 Results

Results of search			
Number of sequences	7		
Alignment score	8685		
Sequence format	Pearson		
Sequence type	aa		
JalView	Start Jalview		
Output file	clustalw2-20091222-1207153770.output		
Alignment file	clustalw2-20091222-1207153770.aln		
Guide tree file	clustalw2-20091222-1207153770.dnd		
Your input file	clustalw2-20091222-1207153770.input		
Your input file SUBMIT ANOTHER JOB	clustalw2-20091222-1207153770.input		

To save a result file right-click the file link in the above table and choose "Save Target As". If you cannot see the JalView button, reload the page and check your browser settings to enable Java Applets.

Nella prima parte della pagina sono riportati i collegamenti ai file contenenti i risultati di ClustalW in formato testuale. Nella seconda parte (figura seguente) è riportata la matrice delle distanze in cui a ciascuna coppia di sequenze è associato il punteggio che ne misura la distanza:

Scores Table

Sort	Sort by Sequence Number View Output File								
SeqA	Name	Len(aa)	SeqB	Name	Len(aa)	Score			
1 1 1	gi 89898882 ref YP_521353.1 gi 89898882 ref YP_521353.1 gi 89898882 ref YP_521353.1	234 234 234	2 3 4	gi 117923774 ref YP_864391.1 gi 71908811 ref YP_286398.1 gi 15595724 ref NP_249218_1	232 231 227	34 47 35			
1	gi 89898882 ref YP_521353.1 gi 89898882 ref YP_521353.1	234 234	5 6	gi 74318611 ref YP_316351.1 gi 71907299 ref YP_284886.1	254 233	28 40			
1 2 2	gi 89898882 ref YP_521353.1 gi 117923774 ref YP_864391.1 gi 117923774 ref YP_864391.1	234 232 232	3 4	gi 83745551 ref ZP_00942609.1 gi 71908811 ref YP_286398.1 gi 15595724 ref NP_249218.1	225 231 227	36 29 33			
2 2 2	gi 117923774 ref YP_864391.1 gi 117923774 ref YP_864391.1 gi 117923774 ref YP_864391.1	232 232 232	5 6 7	gi 74318611 ref YP_316351.1 gi 71907299 ref YP_284886.1 gi 83745551 ref ZP_00942609.1	254 233 225	30 28 29			
3	gi 71908811 ref YP_286398.1 gi 71908811 ref YP_286398.1	231 231	4	gi 15595724 ref NF_249218.1 gi 74318611 ref YF_316351.1	227 254	32 28			
3 3 4	gi 71908811 ref YP_286398.1 gi 71908811 ref YP_286398.1 gi 15595724 ref NP_249218.1	231 231 227	6 7 5	gi /190/299 ref YP_284886.1 gi 83745551 ref ZP_00942609.1 gi 74318611 ref YP_316351.1	233 225 254	39 32			
4 4 5	gi 15595724 ref NP_249218.1 gi 15595724 ref NP_249218.1 gi 74318611 ref YP_316351.1	227 227 254	6 7 6	gi 71907299 ref YP_284886.1 gi 83745551 ref ZP_00942609.1 gi 71907299 ref YP_284886.1	233 225 233	29 29 28			
5	gi 74318611 ref YP_316351.1 gi 71907299 ref YP_284886.1	254 233	7 7 7	gi 83745551 ref ZP_00942609.1 gi 83745551 ref ZP_00942609.1	225 225	32 33			

PLEASE NOTE: Some scores may be missing from the above table if the alignment was done using multiple CPU mode. Please check the output.

Segue l'allineamento multiplo e l'albero guida codificato sia in formato testuale che grafico:

Lo stesso sito mette a disposizione alcuni programmi alternativi di allineamento multiplo. In particolare sono disponibili T-COFFEE (www.ebi.ac.uk/Tools/t-coffee), MAFFT (www.ebi.ac.uk/Tools/mafft/) e MUSCLE (www.ebi.ac.uk/Tools/muscle/). L'interfaccia utente è molto simile a quella utilizzata per Clustal.

Ricalcolate l'allineamento delle sequenze elencate con i tre programmi e confrontate i risultati con quelli ottenuti con Clustal. Noterete che le maggiori differenze sono localizzate nelle regioni N-terminali e C-terminali dell'allineamento e nelle zone in cui sono presenti inserzioni e delezioni.